RETO PARA LA SEGURIDAD ALIMENTARIA EN ALC: VALIDACIÓN DE PRÁCTICAS AGRÍCOLAS ARROceras PARA MEJORAR EL USO EFICIENTE DEL AGUA

Año 2019
Catalogación en la fuente proporcionada por la Biblioteca Felipe Herrera del Banco Interamericano de Desarrollo.
Intervenciones y tecnologías ambientalmente racionales (TAR) para la adaptación al cambio climático del sector agropecuario de América Latina y el Caribe (ALC)

Esta publicación se realiza en el marco del proyecto “Mecanismos y Redes de Transferencia de Tecnologías de Cambio Climático en Latinoamérica y el Caribe (LAC)”. El proyecto, implementado por el Banco Interamericano de Desarrollo (BID) y financiado con recursos del Fondo para el Medio Ambiente Mundial (FMAM), promueve el desarrollo y transferencia de tecnologías para contribuir a la reducción de emisiones de gases efecto invernadero y de la vulnerabilidad al cambio climático en la región LAC, a través de la promoción y el apoyo de esfuerzos de colaboración a nivel regional; el respaldo a la planificación y los procesos de toma de decisiones a nivel nacional y sectorial; la demostración de políticas y mecanismos facilitadores, y la movilización de recursos financieros y humanos privados y públicos. El proyecto prioriza los temas de mitigación y adaptación al cambio climático en los sectores de eficiencia energética y energía renovable, transporte, monitoreo forestal y agricultura resiliente. Asimismo, incluye un componente transversal relacionado con el desarrollo de capacidades institucionales y de políticas nacionales de la región. Las actividades relacionadas con agricultura han sido ejecutadas por el Fondo Regional de Tecnología Agropecuaria (FONTAGRO) entidades ejecutoras.

Autores: José Alberto Yau Quintero, José Isaac Mejía Gutiérrez, Walker del Carmen González, Ruth del Cid, Maika Barría, Jaime Arosemena, Fernando Fernández, Luis Carrera Hidalgo, Johnny Aguilar, José Israel López Rodríguez.

Edición de estilo: Miriam Villeda Izaguirre, Eugenia Saini.

Diseño: Adrian Orsetti

Fotos e imágenes: Banco de imágenes de FONTAGRO y otras con sus respectivas autorizaciones.

Washington D.C., diciembre de 2019

Copyright © 2019 Banco Interamericano de Desarrollo. Esta obra se encuentra sujeta a una licencia Creative Commons IGO 3.0 Reconocimiento-No Comercial-Sin Obras Derivadas (CC-IGO 3.0 BY-NC-ND) (http://creativecommons.org/licenses/by-nc-nd/3.0/igo/legalcode) y puede ser reproducida para cualquier uso no comercial otorgando el reconocimiento respectivo al BID. No se permiten obras derivadas. FONTAGRO es un fondo administrado por el Banco, pero con su propia membresía, estructura de gobernabilidad y activos. Cualquier disputa relacionada con el uso de las obras del BID que no pueda resolverse amistosamente se someterá a arbitraje de conformidad con las reglas de la CNUDMI (UNCITRAL). El uso del nombre del BID para cualquier fin distinto al reconocimiento respectivo y el uso del logotipo del BID no están autorizados por esta licencia CC-IGO y requieren de un acuerdo de licencia adicional. Note que el enlace URL incluye términos y condiciones adicionales de esta licencia.

Las opiniones expresadas en esta publicación son de los autores y no necesariamente reflejan el punto de vista del Banco Interamericano de Desarrollo, FONTAGRO, de sus Directorios Ejecutivos ni de los países que representan.
1. AGRADECIMIENTOS

Deseamos agradecer el apoyo recibido por FONTAGRO para la realización de este proyecto, el cual hubiera resultado difícil llevarlo a cabo sin el apoyo financiero y asistencia técnica brindados.

De igual manera, queremos expresar nuestro agradecimiento al Instituto Nacional de Innovación y Transferencia en Tecnología Agropecuaria (INTA, Costa Rica), al Instituto Nicaragüense de Tecnología Agropecuaria (INTA Nicaragua) y al Instituto de Investigación Agropecuaria de Panamá (IDIAP), por su valioso aporte con personal técnico y administrativo, apoyo en movilización, equipos de cómputo y fotocopiadoras.

Esperamos que los resultados alcanzados en este proyecto, representen una alternativa tecnológica a los productores que practican agricultura familiar, para enfrentar el problema que representa la variabilidad y el cambio climático.
2. CONTENIDO
1. Agradecimientos..3
2. Contenido..4
3. Índice de Cuadros..4
4. Índice de Anexos..4
5. Glosario..5
6. Indicadores Salientes del Proyecto..6
7. Resumen Ejecutivo...7
8. Objetivos del Proyecto...8
 8.1 Objetivo General...8
 8.2 Objetivos Específicos...8
9. Antecedentes..8
10. Estructura del Proyecto...9
11. Resultados..9
12. Discusión de Resultados...16
13. Conclusiones y Recomendaciones..18
 13.1 Conclusiones..18
 13.2 Recomendaciones..18
14. Lecciones Aprendidas..19
15. Bibliografía..20
16. Anexos..21

3. ÍNDICE DE CUADROS
Cuadro 1: Diferencias en labores agronómicas del sistema SRI y convencional..................10
Cuadro 2: Resumen de productos alcanzados con indicadores cuantitativos.....................12
Cuadro 3: Resumen de los resultados alcanzados con indicadores cuantitativos.................13
Cuadro 4: Total de beneficiarios por país...13

4. ÍNDICE DE ANEXOS
Anexo 1: Línea base del proyecto SRI para Agricultura Familiar......................................21
Anexo 2: Productos de difusión y capacitación..25
Anexo 3: Validación de prácticas agrícolas arroceras: SRI..26
5. GLOSARIO

<table>
<thead>
<tr>
<th>Abreviatura</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWD</td>
<td>Método alterno de humedecimiento y secado (riego intermitente)</td>
</tr>
<tr>
<td>FONTAGRO</td>
<td>Fondo Regional de Tecnología Agropecuaria</td>
</tr>
<tr>
<td>IDIAP</td>
<td>Instituto de Investigación Agropecuaria de Panamá</td>
</tr>
<tr>
<td>INTA</td>
<td>Instituto Nacional de Innovación y Transferencia en Tecnología Agropecuaria</td>
</tr>
<tr>
<td>INTA</td>
<td>Instituto Nicaragüense de Tecnología Agropecuaria</td>
</tr>
<tr>
<td>IOV</td>
<td>Indicadores Objetivamente Verificables</td>
</tr>
<tr>
<td>ISTA</td>
<td>Informe de Seguimiento Técnico Anual</td>
</tr>
<tr>
<td>ITF</td>
<td>Informe Técnico Final</td>
</tr>
<tr>
<td>MDV</td>
<td>Medios de Verificación</td>
</tr>
<tr>
<td>OMS</td>
<td>Organización Mundial de la Salud</td>
</tr>
<tr>
<td>POA</td>
<td>Plan Operativo Anual</td>
</tr>
<tr>
<td>STA</td>
<td>Secretaría Técnica Administrativa de FONTAGRO</td>
</tr>
<tr>
<td>SRI</td>
<td>Sistema Intensivo de Arroz (por sus siglas en inglés)</td>
</tr>
</tbody>
</table>
6. INDICADORES SALIENTES DEL PROYECTO

- 30 plataformas creadas (grupos de colaboración activos durante el proyecto) en los tres países.
- 10 técnicos capacitados en elaborar, aplicar y analizar línea base.
- En 45.6 % y 42.8% incrementado el rendimiento en parcelas experimentales de Costa Rica y Nicaragua, respectivamente.
- En 17 y 52 % incrementada la eficiencia en el uso del agua en Panamá y Nicaragua, respectivamente.
- 575 productores capacitados e informados sobre el SRI en los tres países.
- De 3 meses a 7 meses se mejoró la disponibilidad de alimentos con un ciclo de siembra en Panamá (con base en datos experimentales no validados).
7. RESUMEN EJECUTIVO

El Proyecto “Reto para la seguridad alimentaria en ALC: validación de prácticas agrícolas arroceras para mejorar el uso eficiente del agua”, tuvo como objetivo general contribuir a reducir la vulnerabilidad del pequeño productor de arroz de Nicaragua, Costa Rica, y Panamá mediante innovaciones tecnológicas y plataformas de colaboración. Hace énfasis en seguridad alimentaria y adaptación al cambio climático para que la población de estos tres países, ubicadas en zonas de pobreza y pobreza extrema, disponga, acceda y consuma arroz en cantidad, variedad, calidad e inocuidad. Como objetivos específicos, destacan la reducción de la vulnerabilidad de pequeños productores de arroz mediante prácticas agrícolas que mejoren la eficiencia en el uso de agua y suelo.

Con relación al componente de socialización del proyecto, concertación y establecimiento de plataformas locales, se realizaron talleres participativos con los productores utilizando técnicas grupales como mapas parlantes, sondeos, lluvia de ideas y diagnósticos rápidos, para socializar el proyecto y conformar las plataformas locales por país. Para establecer la línea base de los sistemas de producción, se utilizaron los indicadores de organización, producción y abastecimiento de alimentos durante el año. Se organizaron talleres por país para capacitar a los colaboradores (investigadores y técnicos extensionistas) en la metodología de diseñar línea base.

Para el componente de validación, se establecieron parcelas SRI de validación y parcelas con los sistemas tradicionales de siembra que realizan los productores en los tres países. Se utilizó la metodología de Escuelas de Campo para Agricultores- ECA’s, en donde los productores en conjunto con el facilitador, realizaron actividades de aprendizaje participativo, vivencial y por descubrimiento. En Panamá, se compararon parcelas SRI versus parcelas con trasplante manual convencional. En Costa Rica y Nicaragua, se compararon parcelas SRI con parcelas de siembra tradicional conocida como “espeque” o “a chuzo” y siembra de la semilla al voleo. A las parcelas SRI, se le aplicaron abonos orgánicos al momento de nivelación del terreno. El trasplante se realizó con plántulas entre 8 a 10 días después de la germinación, colocando una cada 25 cm entre plantas y 25 cm entre surcos. Para el manejo del agua, se utilizó el sistema de riego intermitente, que consiste en aplicar riego de manera alternada permitiendo dejar el terreno húmedo y seco.

En Panamá se establecieron un total de 30 parcelas de 100 m² cada una en ambos sistemas de producción: SRI y convencional, y se utilizó el cultivar biofortificado de arroz GAB-11. En Costa Rica, se establecieron 9 parcelas de 1,000 m² con el SRI y se compararon con parcelas con el sistema tradicional de espeque y siembra al voleo, utilizando la variedad CR-5272 y en Nicaragua, se establecieron 5 parcelas de 200 m² y se compararon con parcelas con el sistema tradicional de espeque y al voleo en sus siembras. La variedad utilizada fue INTA-Dorado. Se evaluaron las variables de longitud y número de granos de la panicula, macollos/m², paniculas/m², enfermedades, vigor, acame, humedad del grano, peso de 1,000 granos, altura de planta, rendimiento, eficiencia en el uso del agua, entre otros. Entre los resultados más importantes destacan: activación de 30 plataformas de colaboración en los tres países, 10 técnicos capacitados en elaborar, aplicar y analizar línea base, 45.6 % y 42.8% de incremento en rendimiento en Costa Rica y Nicaragua, respectivamente, eficiencia en el uso del agua de un 17 y 52 % en Panamá y Nicaragua, 575 productores capacitados e informados sobre el SRI en los tres países, mejora en la disponibilidad de alimentos de 3 meses a 7 meses con un ciclo de siembra en Panamá.

Entre las lecciones aprendidas se constató que nuestras instituciones públicas tienen limitaciones en la gestión de proyectos y debe considerarse contratar entes administradores que faciliten la ejecución de los mismos. Elevar el uso de herramientas de comunicación como Skype y Viber para mejorar el enlace entre los países de la plataforma. También se requiere optimizar la coordinación y el seguimiento de las contrapartes del proyecto. Como perspectiva a futuro
8. OBJETIVOS DEL PROYECTO

8.1 OBJETIVO GENERAL

Contribuir a reducir la vulnerabilidad del pequeño productor de arroz de Nicaragua, Costa Rica y Panamá, mediante plataformas de innovación que apunten a seguridad alimentaria y adaptación al cambio climático garantizando a la población de estos tres países, arroz en cantidad suficiente, variedad, calidad e inocuidad.

8.2 OBJETIVOS ESPECÍFICOS

Reducir la vulnerabilidad de pequeños productores de arroz mediante prácticas agrícolas que mejoren la eficiencia del uso de agua y suelo. La incorporación del Sistema Intensivo de Arroz (SRI) a fincas de agricultura familiar en los tres países podría permitir:

- Incrementar el rendimiento en un 50%.
- Mejorar los ingresos de la familia en un 30%.
- Mejorar la eficiencia en el uso del agua en un 20%.

9. ANTECEDENTES

El arroz es el alimento básico para más de la mitad de la población mundial. En Asia, más de dos mil millones de personas obtienen del 60 al 70 por ciento de sus calorías del arroz y sus productos (FAO, 2007).

Este grano es la fuente de alimentos de más rápido crecimiento en África y tiene importancia para la seguridad alimentaria, en un número cada vez mayor, de países de bajos ingresos con déficit de alimentos, incluyendo algunos de América Latina y el Caribe (ALC). Asimismo, los sistemas de producción de arroz asociados a sus operaciones postcosecha, emplean casi mil millones de personas en las zonas rurales de los países en desarrollo.

Se estima que unos 50,000 pequeños productores de arroz de Nicaragua, Costa Rica y Panamá cultivan anualmente más de 85,000 hectáreas. (FAOSTAT, 2013).

Por tanto, disponer de sistemas eficaces y productivos de producción de arroz, es fundamental para el desarrollo económico y mejoramiento de la calidad de vida en gran parte de la población mundial.

La variabilidad climática afectará la disponibilidad de agua y en consecuencia la producción de arroz. Esta situación, en parte, es la causa para que los sistemas de producción de arroz, estén siendo sometidos a una fuerte presión debido a su elevada demanda de agua y su función como fuente de emisiones de metano. (FAO, 2007).

El número creciente de habitantes, la necesidad de fortalecer la seguridad alimentaria, la progresiva escasez de recursos hídricos y las ineficientes prácticas del cultivo, apuntan a la necesidad de una agricultura más sostenible. En consecuencia, se necesitan nuevos sistemas de gestión del cultivo que aumenten el rendimiento y reduzcan los costos de producción,
mejoren la eficiencia de la aplicación de insumos, aumenten la eficiencia del uso del agua y reduzcan las emisiones de gas de efecto invernadero.

Como alternativa tecnológica para enfrentar el problema que representa la variabilidad climática, se ha desarrollado el Sistema de Intensificación del Arroz (SRI por sus siglas en inglés), el cual, ha sido valorado en Asia, África y algunos países de ALC.

El SRI es un conjunto de prácticas agrícolas que se basa en el principio de desarrollo de sistemas radiculares saludables, grandes y profundos que puedan resistir mejor la sequía, el anegamiento y el daño causado por el viento.

Las plantas cultivadas mediante este sistema desarrollan raíces y tallos más fuertes, con una mayor cantidad de retoños, con incremento en los rendimientos (Laulanié, 1993; Uphoff, 2001; Stoop et al., 2002; Thakur et al., 2011), representando una alternativa para reducir la vulnerabilidad de pequeños productores ante la variabilidad climática y apuntando a incrementar la productividad de la tierra y el agua.

10. ESTRUCTURA DEL PROYECTO

El proyecto está estructurado por 6 componentes. Se hizo uso de diversas metodologías en su ejecución:

Componente 1: Socialización del proyecto, concertación y establecimiento de plataformas locales de colaboración.

Metodología: Se realizaron talleres participativos con los productores en las zonas seleccionadas utilizando técnicas grupales como mapas parlantes, sondeos, lluvia de ideas y diagnósticos rápidos para socializar el proyecto y establecer las plataformas locales.

Componente 2: Establecimiento de la línea base de los sistemas de producción de arroz.

Metodología: Para su definición se utilizaron los indicadores de organización, producción y abastecimiento de alimentos durante el año. Se organizaron talleres por país para capacitar a los colaboradores (técnicos extensionistas y productores) en la metodología de diseñar línea base.

Componente 3: Validación del SRI en los tres países.

Metodología: Se establecieron parcelas de validación del SRI las cuales fueron comparadas con los sistemas tradicionales de siembra de los productores en cada país. Se utilizó la metodología de Escuelas de Campo para Agricultores (ECAs), en donde los productores en conjunto con el facilitador realizaron actividades de aprendizaje participativo, vivencial y por descubrimiento.

En la propuesta original, se planteó establecer 20 parcelas de 500 m² de superficie con el SRI en cada uno de los tres países, pero la realidad de los productores de arroz que practican la agricultura familiar difiere en cada país, tanto en el tamaño de la unidad familiar como en el sistema de siembra y riego que utilizan.

En Panamá, se compararon parcelas con el SRI versus parcelas con trasplante manual convencional. En Costa Rica y Nicaragua, se compararon parcelas con el SRI con parcelas tradicional de espeque y siembra de la semilla al voleo.

En las parcelas SRI de los tres países, se aplicaron abonos orgánicos al momento de la nivelación del terreno. El trasplante se realizó con plántulas entre 8 a 10 días después de la germinación, colocando una cada 25 centímetros entre plantas y cada 25 centímetros entre surcos. Para el manejo del agua, se utilizó el sistema de
riego intermitente, conocido como AWD por sus siglas en inglés, el cual consiste en aplicar riego de manera alterna.

En Panamá se establecieron en el periodo lluvioso (junio a noviembre), 14 parcelas de 100 m² cada una en los sistemas SRI y convencional en el ciclo 2016 y 16 parcelas en ambos sistemas con la misma superficie en el ciclo 2017. En regiones con disponibilidad de agua en la estación seca (diciembre a mayo), se establecieron cuatro parcelas en ambos sistemas para comparar sus comportamientos dependiendo solo de agua de riego, sin interferencia de las precipitaciones. En ambos sistemas, se utilizó el cultivar de arroz biofortificado GAB-11 el cual se diferencia del convencional por su alto contenido de zinc y hierro (Zn y Fe). Este cultivar fue liberado por el IDIAP para sistemas de agricultura familiar para regiones con problemas de desnutrición infantil.

Las áreas seleccionadas en Panamá, se encuentran localizadas en las provincias de Panamá Oeste (Capira y Chorrera) y Cocle (Antón, La Pintada y Olá).

En Costa Rica se establecieron nueve parcelas de 1,000 m² con el SRI y se compararon con parcelas con el sistema tradicional de espeque y voleo en sus siembras. La variedad utilizada fue CR-5272. Las áreas seleccionadas se encuentran ubicadas en la provincia de Guanacaste, Cantón de Upala, comunidad de Pueblo Nuevo.

En Nicaragua se establecieron cinco parcelas de 200 m² y se compararon con parcelas con el sistema tradicional de espeque y voleo en sus siembras. La variedad utilizada fue INTA-Dorado. Las áreas seleccionadas se encuentran ubicadas en el municipio de Ponsoltega, departamento de León; municipio de La Paz y municipio El Rosario, departamento de Carazo y el municipio de Chinandega, departamento de Chinandega.

Las variables evaluadas fueron: número de hijos efectivos, largo de la espiga, número de granos por espiga, altura de planta, rendimiento, rentabilidad, cantidad de semilla e insumos utilizados, entre otros.

En el Cuadro 1, se presenta la diferencia en labores agronómicas entre ambos sistemas de producción.

Cuadro 1: Diferencias en labores agronómicas del sistema SRI y convencional

<table>
<thead>
<tr>
<th>Labores agronómicas</th>
<th>Convencional</th>
<th>SRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparación del terreno</td>
<td>Igual</td>
<td>Igual</td>
</tr>
<tr>
<td>Preparación del semillero</td>
<td>Igual</td>
<td>Igual</td>
</tr>
<tr>
<td>Días a trasplante</td>
<td>20 días (4 hojas)</td>
<td>10 días (2 hojas)</td>
</tr>
<tr>
<td>Control de malezas</td>
<td>Químico</td>
<td>Mecánico</td>
</tr>
<tr>
<td>Manejo del riego</td>
<td>Inundación</td>
<td>Intermitten</td>
</tr>
<tr>
<td>Fertilización</td>
<td>Química</td>
<td>Orgánica</td>
</tr>
<tr>
<td>Control de enfermedades</td>
<td>Químico</td>
<td>Ninguno</td>
</tr>
<tr>
<td>Control de insectos</td>
<td>Químico</td>
<td>Ninguno</td>
</tr>
<tr>
<td>Días a cosecha</td>
<td>110 días*</td>
<td>110 días*</td>
</tr>
</tbody>
</table>

* días después del trasplante
Con el propósito de vincular la agricultura familiar con el mercado, en el caso de Panamá, se ha propuesto que la producción de las parcelas experimentales se utilizará como semilla certificada para cubrir en parte, la demanda de proyectos que trabajan con agricultura familiar en el país.

Componente 4: Difusión y capacitación sobre el SRI a productores y técnicos extensionistas.

Metodología: Se realizaron actividades de difusión del SRI para facilitar su aceptación y apropiación y desarrollar capacidades a investigadores, extensionistas y productores, por medio de talleres animando a los vecinos a participar en las prácticas culturales de manejo del cultivo.

Se utilizó el enfoque participativo con metodologías como “aprender haciendo”, de productor a productor y metodologías grupales como días de campo, demostraciones de métodos, demostraciones de resultados y giras técnicas. Por otro lado, se realizaron actividades de difusión masiva a través de medios de comunicación como la radio y televisión y se distribuyó información escrita mediante afiches, plegables y guías técnicas.

Componente 5: Seguimiento y evaluación.

Metodología: Se dio seguimiento al desempeño del SRI y se realizaron ajustes. Con los resultados de la línea base y la información obtenida durante el seguimiento, se verificó el logro de las metas del proyecto y el estado de los indicadores de desempeño para luego cuantificar los impactos (económico, social y ambiental).

Componente 6: Sistematización de la información generada.

Metodología: Levantamiento y ordenamiento de los procesos, lecciones aprendidas y resultados del proyecto.

11. **RESULTADOS**

Los principales resultados, productos y beneficiarios directos se presentan en forma agregada y luego por país. El detalle por país se presenta en los anexos respectivos.

Para implementar la línea base fue necesario elaborar una encuesta, proceso que involucró a varias personas y dos reuniones con técnicos extensionistas e investigadores, para completar la información de forma consensuada. Luego, se realizó una validación de la encuesta con productores colaboradores (candidatos potenciales a ser beneficiarios directos del proyecto).

Con la encuesta validada, se aplicó a 20 productores potenciales a quienes se les visitó en su finca para verificar el cumplimiento de requisitos previamente considerados para formar parte del proyecto, específicamente: ser productor(a) de arroz, accesibilidad a la parcela, disponibilidad de agua todo el año y formar parte de una asociación o grupo de productores.

Una vez aplicada la encuesta, se tabuló la información y se procesó para su análisis con el programa Epi Info, diseñado por la Organización Mundial de la Salud (OMS).

La misma encuesta fue aplicada en los tres países y los resultados se enviaron al IDIAP de Panamá para su análisis e interpretación. Los resultados más salientes se presentan a continuación:

- El 48.8% recibe ingresos económicos por aportes de salarios y/o por apoyos sociales de los gobiernos, lo que implica que más de la mitad depende las actividades de la agricultura familiar para cubrir su alimentación.
- El 68.3% destina la producción de arroz principalmente para el consumo familiar.
- El 48.8% de los productores emplean el sistema de siembra directa pregerminada.
- El 70.7% de los productores presentaron promedios bajos de rendimientos en la producción de arroz (<2,300 Kg).
- El 87.8% del sistema de riego es por inundación.
- El 68.3% de los productores están organizados en el ámbito comunitario.
- El aumento en la producción de arroz para la agricultura familiar mediante innovación tecnológica, el empleo de técnicas amigables con el ambiente y la conservación de los recursos naturales mejorará tanto la seguridad alimentaria como la conservación del medio ambiente.

Se programó la segunda línea base del proyecto para comparar la situación al inicio de la implementación y al concluir el mismo, incluyendo la capacitación en el programa informático “Epi Info”, con los colegas de los INTA´s de Costa Rica y Nicaragua.

Los cuadros resumen 2, 3, y 4 por componente y actividad, utilizando indicadores cuantitativos se presentan a continuación:

Cuadro 2: Resumen de productos alcanzados con indicadores cuantitativos

<table>
<thead>
<tr>
<th>Actividades</th>
<th>Indicadores cuantitativos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Panamá</td>
</tr>
<tr>
<td>1. Socialización, concertación y establecimiento de plataformas</td>
<td>4</td>
</tr>
<tr>
<td>• Taller de inducción del proyecto y establecimiento de plataformas por país</td>
<td>2</td>
</tr>
<tr>
<td>• Taller de metodología del SRI</td>
<td>2</td>
</tr>
<tr>
<td>2. Establecimiento de la línea base</td>
<td>2</td>
</tr>
<tr>
<td>• Taller de capacitación en diseño de línea base por país</td>
<td>1</td>
</tr>
<tr>
<td>• Implementación de línea base por país</td>
<td>1</td>
</tr>
<tr>
<td>3. Validación del SICA</td>
<td>30</td>
</tr>
<tr>
<td>• Establecimiento de parcelas SRI vs. parcelas convencional</td>
<td>30</td>
</tr>
<tr>
<td>4. Actividades difusión y capacitación</td>
<td>29</td>
</tr>
<tr>
<td>• Capacitación en muestreo de suelo y compost</td>
<td>2</td>
</tr>
<tr>
<td>• Capacitación en preparación del terreno, uso de pozo de observación</td>
<td>3</td>
</tr>
<tr>
<td>• Capacitación en trazado y confección de melgas</td>
<td></td>
</tr>
<tr>
<td>• Capacitación en lectura del pluviómetro y medidor de agua</td>
<td>3</td>
</tr>
<tr>
<td>• Giras técnicas</td>
<td>3</td>
</tr>
<tr>
<td>• Días de campo</td>
<td>4</td>
</tr>
<tr>
<td>• Participación en ferias</td>
<td>1</td>
</tr>
<tr>
<td>• Elaboración de afiches, plegables y guías técnicas</td>
<td>3</td>
</tr>
<tr>
<td>• Participación en programas radiales y televisivas</td>
<td>2</td>
</tr>
<tr>
<td>• Participación en congreso</td>
<td>6</td>
</tr>
<tr>
<td>5. Seguimiento y evaluación</td>
<td></td>
</tr>
<tr>
<td>• Elaboración de informes, visitas y evaluación del proceso</td>
<td>2</td>
</tr>
<tr>
<td>6. Sistematización</td>
<td></td>
</tr>
<tr>
<td>• Levantamiento y ordenamiento del proceso, lecciones aprendidas y resultados del proyecto</td>
<td></td>
</tr>
<tr>
<td>Entrega informe final</td>
<td></td>
</tr>
</tbody>
</table>
Cuadro 3: resumen de los resultados alcanzados con indicadores cuantitativos

<table>
<thead>
<tr>
<th>Actividades</th>
<th>Indicadores cuantitativos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Panamá</td>
</tr>
<tr>
<td>1. Socialización, concertación y establecimiento de plataformas</td>
<td></td>
</tr>
<tr>
<td>• Plataformas por país</td>
<td>16</td>
</tr>
<tr>
<td>• Productores informados del SRI</td>
<td>140</td>
</tr>
<tr>
<td>2. Establecimiento de la línea base</td>
<td></td>
</tr>
<tr>
<td>• Personal técnico capacitado en elaborar, aplicar y analizar línea base</td>
<td>4</td>
</tr>
<tr>
<td>• Línea base elaborada</td>
<td>1</td>
</tr>
<tr>
<td>3. Validación del SRI</td>
<td></td>
</tr>
<tr>
<td>• Establecimiento parcelas SRI vs. parcelas convencional 100 m²</td>
<td>30</td>
</tr>
<tr>
<td>• Establecimiento parcelas SRI vs. parcelas convencional 1,000 m²</td>
<td>9</td>
</tr>
<tr>
<td>• Establecimiento parcelas SRI vs. parcelas convencional 200 m²</td>
<td>17.15</td>
</tr>
<tr>
<td>• Incremento en rendimiento en %</td>
<td></td>
</tr>
<tr>
<td>• Eficiencia en uso de agua en %</td>
<td></td>
</tr>
<tr>
<td>• Ahorro de agua</td>
<td></td>
</tr>
<tr>
<td>• Mejora en los ingresos de la familia. (Se reemplazó por mejora en la disponibilidad de alimentos)</td>
<td>4</td>
</tr>
<tr>
<td>• Mejora en la disponibilidad de alimentos (no considerado en el proyecto original)</td>
<td>2</td>
</tr>
<tr>
<td>4. Actividades de difusión y capacitación</td>
<td>411</td>
</tr>
<tr>
<td>• Productores capacitados el SRI</td>
<td>150</td>
</tr>
<tr>
<td>• Productores informados</td>
<td>250</td>
</tr>
<tr>
<td>• Afiches elaborados</td>
<td>2</td>
</tr>
<tr>
<td>• Tesis realizada</td>
<td>1</td>
</tr>
<tr>
<td>• Presentación de resultados en congreso</td>
<td>1</td>
</tr>
<tr>
<td>• Participación en programas radiales</td>
<td>4</td>
</tr>
<tr>
<td>• Participación en programas televisivos</td>
<td>3</td>
</tr>
<tr>
<td>5. Seguimiento y evaluación</td>
<td>3</td>
</tr>
<tr>
<td>• Informes elaborados y entregados</td>
<td>2</td>
</tr>
<tr>
<td>• Visitas de colegas del INTA de Costa Rica</td>
<td>1</td>
</tr>
<tr>
<td>6. Sistematización</td>
<td>1</td>
</tr>
<tr>
<td>• Levantamiento y ordenamiento del proceso, lecciones aprendidas y resultados del proyecto</td>
<td>1</td>
</tr>
<tr>
<td>Entrega informe final</td>
<td>1</td>
</tr>
</tbody>
</table>

Cuadro 4: Total de beneficiarios por país

<table>
<thead>
<tr>
<th>Actividades</th>
<th>Indicadores cuantitativos/ cualitativos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Panamá</td>
</tr>
<tr>
<td></td>
<td>Nº</td>
</tr>
<tr>
<td>1. Socialización, concertación y establecimiento de plataformas</td>
<td>4</td>
</tr>
</tbody>
</table>

13
<table>
<thead>
<tr>
<th>Actividad</th>
<th>Cantidad</th>
<th>Horas</th>
<th>Días</th>
<th>Semanas</th>
<th>Pago</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Talleres de inducción del proyecto y establecimiento de plataformas por país</td>
<td>2</td>
<td>120</td>
<td>1</td>
<td>19</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>• Taller de metodología del SRI</td>
<td>2</td>
<td>20</td>
<td>9</td>
<td>1</td>
<td>41</td>
<td>0</td>
</tr>
<tr>
<td>2. Establecimiento de la línea base</td>
<td>2</td>
<td>35</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Taller de capacitación en diseño de línea base por país</td>
<td>1</td>
<td>15</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>• Levantamiento de línea base por país</td>
<td>1</td>
<td>20</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>3. Validación del SICA</td>
<td>3</td>
<td>30</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Establecimiento de parcelas SRI vs. parcelas convencional</td>
<td>3</td>
<td>30</td>
<td>16</td>
<td>9</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>4. Actividades difusión y capacitación</td>
<td>3</td>
<td>892</td>
<td>91</td>
<td>1</td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>• Capacitación en muestreo de suelo y compost</td>
<td>2</td>
<td>40</td>
<td>15</td>
<td>1</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>• Capacitación en preparación del terreno, uso de pozo de observación, semillero</td>
<td>3</td>
<td>40</td>
<td>12</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>• Capacitación en trazado y confección de melgas</td>
<td>4</td>
<td>40</td>
<td>12</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>• Capacitación en lectura del pluviómetro y medidor de agua</td>
<td>3</td>
<td>30</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>• Giras técnicas</td>
<td>1</td>
<td>90</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>• Días de campo</td>
<td>1</td>
<td>32</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>• Participación en ferias</td>
<td>3</td>
<td>50</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>• Elaboración de afiches, plegables y guías técnicas</td>
<td>2</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>• Participación en programas radiales y televisivas</td>
<td>6</td>
<td>120</td>
<td>10</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>• Participación en congreso</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

El indicador propuesto en el proyecto original, “mejorar los ingresos de la familia en un 30%” no se pudo lograr con este proyecto debido a que el grupo meta del mismo es el pequeño...
productor que practica la agricultura familiar, el cual, no logra cubrir sus necesidades anuales de alimento.

Cuando planteamos la propuesta inicial, consideramos vincular la actividad con el mercado, asumiendo que se podría comercializar el excedente del grano para generar recursos que sirvieran para cubrir otras necesidades.

Al conocer la realidad del tipo de productor meta que tenemos, caracterizado por no tener acceso a crédito ni asistencia técnica, con baja escolaridad, no organizado, con muchos miembros en la familia y poseedor de una pequeña superficie de terreno, áreas marginales, y que su principal problema es cubrir las necesidades de alimentación para todo el año, decidimos emplear el indicador MAHFP (meses de aprovisionamiento adecuado de alimento en el hogar) el cual sí representa un indicador aplicable a este tipo de productor.

Para poder medir este indicador, lo incluimos en la encuesta de la línea base. Se anticipa que el productor podrá obtener al menos dos cosechas por año agrícola y así cubrir sus necesidades de alimento del año.

En gran medida, todos los resultados descritos son atribuibles al apoyo proporcionado por FONTAGRO porque con el fondo otorgado, tuvimos la oportunidad de validar el SRI, sistema desconocido por el equipo e instituciones participantes, pero que por más de 30 años se ha implementado en más de 50 países en el mundo.

Gracias a esta iniciativa promovida por FONTAGRO, y debido a los buenos resultados alcanzados con el proyecto, nos hemos propuesto iniciar la masificación del SRI en nuestros tres países.

Es importante destacar el impacto del proyecto en cuanto al tema de sostenibilidad, debido a que el SRI es un conjunto de prácticas agrícolas agroecológicas, desarrollado para incrementar la productividad de la tierra y el agua, reducir el uso de semilla y plaguicidas de síntesis química.

Aunque existen tres modalidades del SRI, el implementado por el proyecto, es la modalidad orgánica, la cual se considera más sostenible en el tiempo porque reduce el uso de agroquímicos y fertilizantes inorgánicos, mejorando así la salud y calidad del suelo y respetando la flora benéfica.

El proyecto tiene importancia como innovación tecnológica porque no había sido validado a nivel experimental en ninguno de los tres países.
12. DISCUSIÓN DE RESULTADOS

Una vez superadas las situaciones que sufrieron los colegas del INTA de Costa Rica con el huracán Otto a finales del año 2016 y la sequía que afectó las Regiones IV y VI en Nicaragua, causando las pérdidas de 15 de las 20 parcelas, se logró finalmente, obtener resultados en el ciclo de siembra del 2017.

En el caso particular de Panamá, las condiciones climáticas no afectaron al cultivo durante los dos ciclos de siembra ni favorecieron la incidencia de enfermedades foliares. De igual manera, fueron dos años que presentaron buena precipitación, por consiguiente, no hubo condiciones de estrés hídrico al cultivo, lográndose obtener los datos esperados.

Se espera que gradualmente se incorporen más productores a validar el SRI debido a la demanda de otras regiones que no fueron inicialmente beneficiadas con el proyecto, pero están informados de sus ventajas a través de los medios impagos, radiales y televisivos.

En el caso de Panamá, se ha iniciado el establecimiento de parcelas en fincas de productores que practican la agricultura familiar en cinco localidades, ubicadas en tres provincias y una Comarca de pueblos indígenas, quienes no fueron beneficiadas inicialmente con el proyecto.

De acuerdo a los datos de la cosecha en los dos ciclos de validación del SRI en Panamá, no se encontró diferencia significativa en el componente rendimiento entre ambos sistemas, utilizando la prueba t (ver anexo 3) con 4.86 t.ha-1 en la parcela convencional y 4.8 t.ha-1 en el SRI para el año 2016 y 5.19 t.ha-1 para la convencional y 5.70 t.ha-1 para la del SRI para el año 2017. Cabe señalar, que ambos sistemas fueron por trasplante manual, en condiciones de suelo fangueado e inundado debido a la buena precipitación (1,224 mm), que se presentó durante el período de evaluación reduciendo el estrés de las plantas por sequía en ambos sistemas.

Con relación al eficiente uso del agua, la parcela SRI mostró 5.08 kg x ha-1 x mm1 con respecto a la parcela convencional 4.19 kg x ha-1 x mm1. Esta leve diferencia de la parcela SRI, al igual con lo sucedido con el componente de rendimiento, se pudo deber a que en ambos años hubo buena y bien distribuida precipitación, manteniéndose la película de agua en la parcela SRI, dificultándose su drenaje, afectando los resultados esperados. De acuerdo a otros autores (Laulaníé, 1993; Uphoff, 2001; Stoop et al., 2002; Thakur et al., 2011) las plantas cultivadas mediante este sistema, desarrollan raíces y tallos más fuertes, con una mayor cantidad de retoños e incremento en los rendimientos.

Como las parcelas SRI se establecieron en la estación lluviosa, el consumo total de agua (mm); equivale en su mayoría a la sumatoria del componente precipitación pluvial total y fue muy poca la lámina de agua aplicada por riego intermitente. En la siembra tradicional el consumo total promedio de agua fue mayor: 1,049 mm en comparación con el manejo SRI, donde el consumo total fue de 984 mm. La eficiencia en el uso del agua relaciona la productividad del grano, obtenida por el cultivo y el consumo total de agua durante el ciclo del cultivo (Michael 1981).

En las parcelas SRI, se obtuvo una leve eficiencia en el uso del agua ya que se consumió menos agua en promedio, 6.14% en comparación con la siembra convencional con 6.04%. Por consiguiente, en ambos años no se pudo aplicar el método AWD (alternar condiciones húmedas y secas), conocido como riego intermitente.

En términos generales, las parcelas con el SRI, se comportaron bien con relación al ataque de enfermedades al follaje, panicúlas y granos del arroz, comparado con la parcela convencional, dado que a las parcelas SRI, no se le aplicaron productos fitosanitarios de síntesis química, representando un valor a considerar en este sistema de producción.
En el caso de Costa Rica, los rendimientos potenciales en este primer ciclo de validación del SRI, se alcanzaron en una parcela 6.8 t/ha, debido en gran parte, al alto macollamiento con 52 tallos efectivos por planta madre, lo que permite corroborar que el sistema SRI presenta potencial para incrementar los rendimientos.

El agua para riego, en la región donde se instalaron las parcelas, procede de canales laterales donde corre el agua de forma natural, como quebradas o seguías que permitieron el uso de agua en los momentos oportunos de riego, manteniendo suficiente humedad en el suelo. Cuando las condiciones de lluvia no eran continuas fue posible aprovechar el agua para mantener el sistema en condiciones de humedad a capacidad de campo.

En Nicaragua se obtuvieron los rendimientos más altos en las parcelas con el SRI comparado con la siembra tradicional. El promedio en rendimiento de las cinco parcelas fue de 7 t/ha con respecto a las 4.3 t/ha obtenido en la parcela tradicional. Con respecto al uso del agua, Nicaragua reporta, caudal Q =24,520.8 m³/ha en la parcela convencional, comparada a los Q= 11615 m³/ha de la parcela SRI.

Aunque las variables costos de producción y rentabilidad no fueron consideradas entre los indicadores a medir en el proyecto original, Nicaragua, realizó un análisis económico, el cual reflejó, en la parcela SRI, un beneficio neto de USD 1,086.75, en comparación a los USD 639.91 de la parcela tradicional, debido a la diferencia en rendimiento, a pesar de que el costo variable de la parcela tradicional fue de USD 587.7 en comparación a los USD 920.4 de la parcela con el SRI.

En el caso de Panamá solo se llevó registro del costo de producción (insumos, mano de obra y semilla) en cinco de las 16 parcelas. El costo de producción en la parcela SRI fue menor en estos tres componentes, debido a que, en el SRI, solo se emplean productos orgánicos y enmiendas que prepara el productor en su finca, lo cual, no le representa costo adicional. Para fines de análisis económicos en estos sistemas de producción con superficie pequeñas (100 a 200 m²), el costo de la mano de obra en ambos sistemas es casi similar, sobre todo en sistemas de siembra por trasplante manual.

Con el interés de determinar el efecto del uso de compost en las parcelas con el SRI con más de dos ciclos continuos de siembra, se instaló un ensayo para evaluar bajo condiciones de laboratorio, la influencia de parámetros físico-químicos (humedad, temperatura y pH) sobre la actividad microbiana en un suelo agrícola medida por la cuantificación de la producción de CO₂ y actividad deshidrogenasa.

Los mayores valores de la actividad microbiana se obtuvieron en suelos cultivados de arroz bajo el sistema SRI (con una humedad cercana al 15%) valores por encima de 18% mostraban saturación del suelo, debido a un incremento en el agua del suelo reduce el estado de aireación por reducción del espacio de los poros para la difusión de gases. En condiciones estándares de temperatura y pH se encontró que la temperatura de 27.5°C era óptima para producción de CO₂. Los resultados indican mayor actividad microbiana entre un 42 mg de CO₂ .100 g⁻¹ en la parcela SRI comparado con los 33 mg CO₂. 100 g⁻¹ de la parcela del productor.

Por otra parte, se logró mayor actividad enzimática deshidrogenasa 0.083 de la formazan x gramo de suelo seco en la parcela del productor a 0.041 de formazan x gramo de suelo seco en la parcela SRI. Esta actividad enzimática fue mayor en los suelos inundados del sistema convencional de cultivo de arroz que en suelos bajo sistema SRI, debido a la disminución del potencial redox, lo cual podría explicarse en función de las condiciones hipóxicas de estos suelos.

Entre los riesgos o limitaciones que pudieron identificar durante la ejecución del proyecto que pudieran no hacer viables algunos de los resultados obtenidos, podemos mencionar:
• El daño causado a las parcelas por el huracán Otto en Costa Rica (noviembre 2016), obligó a reprogramar la siembra para el siguiente año, razón por la cual solo se presentan datos de un año.
• La sequía en Nicaragua afectó 15 de las 20 parcelas instaladas. (octubre 2016).
• En Panamá, la abundancia y frecuencia de lluvias, que se presentaron en los dos años, en los meses en que se instalaron las parcelas, afectó los resultados de rendimiento, al no reflejar diferencia significativa entre el SRI y la siembra convencional cuando se analizó mediante la prueba t, debido en gran parte a que ambas parcelas estuvieron saturadas de agua.

13. CONCLUSIONES Y RECOMENDACIONES

8.3 CONCLUSIONES
• El SRI presenta ventajas sobre la siembra convencional por trasplante manual.

• Las condiciones de precipitación en ambos años de validación del SRI, con promedio de 1,220 mm durante los meses en que se realizó la evaluación, permitieron una leve diferencia en la eficiencia del uso del agua en la parcela con el SRI.

• Las parcelas SRI presentaron una mejor sanidad en el follaje, panícula y grano comparadas con las parcelas convencionales. Si consideramos que, en el sistema SRI no se emplearon productos fitosanitarios de síntesis química, esto le proporciona un valor agregado a este sistema.

• En la parcela SRI se utilizó menos semilla y presentó menor costo en tres renglones (compra de insumos, mano de obra empleada y uso de semilla) que la parcela convencional de trasplante manual.

8.4 RECOMENDACIONES
• Establecer parcelas de validación durante la estación seca (diciembre a abril) para determinar el efecto del método de riego AWD (riego intermitente).

• Realizar ensayos de emisión de GIS en parcelas SRI en comparación de la parcela convencional.

• Realizar ensayos de respiración y deshidrogenasa para determinar la presencia de microbiota del suelo en la parcela SRI comparada con la convencional.

• Aumentar de un ciclo de siembra actual, a tres al año, para mejorar la disponibilidad de arroz durante los 12 meses y lograr excedentes para comercializar como arroz orgánico.

• Realizar las consultas ante la Autoridad de Control y Certificación Pública Orgánica de Panamá a fin de incluir a los productores colaboradores del proyecto en este sistema y lograr mejorar su ingreso familiar con la comercialización de este producto, el cual tiene alta demanda.

• Iniciar el escalamiento y masificación del SRI a otras regiones del país, procurando apoyo del Ministerio de Desarrollo Agropecuario y otras entidades crediticias de fomento, considerando que el Gobierno Nacional promulgó la Ley N° 17 de 22 de febrero de 2018, que declaró al arroz como cultivo de seguridad alimentaria nacional.

• Con el apoyo de FONTAGRO, los tres países que integran esta plataforma (Costa Rica, Nicaragua y Panamá) dispondrán en los próximos meses, de trasplantadoras, desyerbadoras y
llenadoras de bandejas mecánicas para iniciar la transferencia del SRI modificado a sistemas mecanizados con mayor superficie.

- Evaluar otros germoplasmas disponibles en el mercado con mayor producción de hijos efectivos por plantas para el sistema mecanizado.

- Procurar la inscripción como productores de arroz orgánico a productores colaboradores ya capacitados en el SRI en los sistemas de control certificación pública de productos orgánicos para vincularla al comercio y así lograr mejorar sus ingresos.

- A los países beneficiados con proyectos de cooperación técnica con fondos de FONTAGRO u otros donantes, procurar contratar una empresa que administre fondos con el fin de agilizar el proceso de compra de bienes y servicios.

14. LECCIONES APRENDIDAS

- Para los proyectos con fondos financiados por organismos internacionales, que involucre a varios países, se deberá mejorar el proceso de apertura de cuentas, transferencia de los fondos a los países miembros de la plataforma. De igual manera, los procesos de cotización, compra y adquisición de bienes y servicios. Con respecto a este punto, el proyecto tuvo bajo alcance porque el problema es institucional.

- La demora en el primer desembolso y la codificación de la cuenta bancaria, representaron retrasos en los plazos establecidos para el inicio de las actividades del proyecto.

- Los trámites burocráticos establecidos en las instituciones no permiten agilizar el proceso de adquisición de bienes y servicios, por lo cual deben buscarse opciones viables que reduzcan este riesgo de retraso.

- Es necesario que las contrapartes de la plataforma que se encuentran ubicadas en otros países ejerzan una mejor coordinación y seguimiento del proyecto.

- Mejorar y fomentar el uso de diferentes estrategias de comunicación internacional como el uso de Skype, Viber, Hangouts, y otros programas creando la cultura entre los investigadores a utilizar estas herramientas efectivas y al alcance de todos para mejorar la comunicación a distancia.
15. BIBLIOGRAFÍA

16. ANEXOS

Anexo 1: Línea base del proyecto SRI para Agricultura Familiar

<table>
<thead>
<tr>
<th>Línea base del Proyecto Sistema Intensivo del Cultivo de Arroz (SRI) para Agricultura familiar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsable: Maika Barría</td>
</tr>
<tr>
<td>Colaboradores: José A. Yau, Walker González, José Mejía, Ruth del Cid, Gloria Olave, Jaime Arosemena, Fernando Fernández por IDIAP-Panamá; Luis Carrera y Johnny Aguilar por el INTA-Costa Rica y José Israel López Rodríguez por el INTA-Nicaragua.</td>
</tr>
</tbody>
</table>

Antecedentes:

El arroz es la principal fuente de alimento para miles de millones de personas en el mundo. Es la fuente de alimento de más rápido crecimiento en África y tiene suma importancia para la seguridad alimentaria en un número cada vez mayor de países de bajos ingresos con déficit de alimentos, tal es el caso, de algunos países de América Latina y el Caribe.

El SRI es un conjunto de prácticas agrícolas para el cultivo de arroz que se basa en el principio de desarrollo de sistemas radicales saludables, grandes y profundos que puedan resistir mejor la sequía, el anegamiento y el daño causado por el viento. Las plantas cultivadas mediante este sistema desarrollan raíces y tallos más fuertes, con una mayor cantidad de retoños, con incremento en los rendimientos representando una alternativa para reducir la vulnerabilidad de pequeños productores ante el cambio climático, logrando incrementar la productividad de la tierra y el agua. Lograr contribuir a reducir la vulnerabilidad mediante la innovación tecnológica es un gran paso en apoyo a la seguridad alimentaria y la agricultura familiar.

La línea de base, permite establecer la situación de producción, social y económica de las familias beneficiadas desde el inicio de las actividades de intervención, a partir de la cual se podrán evaluar el impacto del proyecto. Es por ello, que se hace necesario contar con información primaria sobre la caracterización de las principales prácticas llevadas por agricultores seleccionados para el proyecto en cuanto al manejo del cultivo de arroz.

Objetivo General: Elaborar la línea base del proyecto SICA en Panamá, Costa Rica y Nicaragua.

Objetivos Específicos:
- Elaboración de indicadores que apoyen a evaluar la efectividad del proyecto.
- Recolectar información primaria para la elaboración de la línea base del proyecto.
- Determinar durante las intervenciones los datos para la evaluación de los indicadores del proyecto.

Materiales y Métodos:

La muestra fue de un total de 41 plataformas, conformadas por adultos, hombres y mujeres productores provenientes de localidades rurales de la Provincia de Panamá Oeste y Coclé en la República de Panamá de Alajuela en la República de Costa Rica y de Matagalpa, Rivas y Granada en la República de Nicaragua.

Se recolectaron datos socioeconómicos, de producción de arroz, manejo de agua y organización comunitaria aplicando una encuesta previa al inicio del proyecto. Se obtuvo información sobre disponibilidad de alimentos durante el año previo a la recolección de datos, empleando el instrumento para indicador sobre los meses de aprovisionamiento adecuado de alimentos en el hogar (MAHFP) validado por United State Agency International Development (USAID). Este indicador puede, a lo largo del tiempo, capturar cambios de la capacidad del hogar para abordar la vulnerabilidad de tal forma que se garantice el aprovisionamiento por
encima de un nivel mínimo durante todo el año.

La información fue procesada y analizada mediante los programas Epi Info 7 y Stata 11. Los datos obtenidos se analizan en métodos mixtos, procedimientos estandarizados cuantitativos (estadística descriptiva) y cualitativos (evaluación temática).

Resultados y discusión:

Participaron un total de 41 plataformas o fincas (escenarios) de productores, participando el 48.8% en Panamá, 19.5% en Costa Rica y 31.7% en Nicaragua. Se conformaron para el proyecto plataformas o grupos con un total aproximado de 200 pequeños productores y más de 1,000 beneficiarios indirectos entre los tres países. Las plataformas en Panamá fueron conformadas por pequeños grupos de familias productoras en cada localidad siendo un promedio de 7.4 integrantes en cada una de las 20 plataformas; mientras que en Costa Rica y Nicaragua los grupos fueron conformados por asociaciones rurales de productores de arroz, con un promedio en ambos países de aproximadamente 2.5 integrantes en cada una de las 21 plataformas.

Eje socioeconómico

Entre los principales datos sociodemográficos recopilados se pueden mencionar que la mediana de edad entre los participantes fue de 48.5 años. El 90.2% fueron hombres y el 9.8% mujeres, siendo estas últimas solamente en Panamá. El 51.2% de los participantes contaban con primaria completa; el 78.0% mantienen un estado civil casado o unido. La mediana de miembros por familia fue de 5; destacándose que el 70.7% están conformadas por menores de edad.

En cuanto al eje socioeconómico el 48.8% manifestó recibir ingresos económicos por aportes de salarios de al menos un miembro del hogar y/o por apoyos sociales de los gobiernos en Panamá y Costa Rica; más de la mitad depende de las actividades de la agricultura familiar para cubrir su alimentación. El 53.7% de las fincas son propias, el 29.3% son derecho posesorio y el 7.3% entre alquiladas, prestadas y de uso comunal.

Del total de los participantes encuestados encontramos que el 82.9% lograron alcanzar el aprovisionamiento adecuado de alimentos en el hogar en el año previo a la aplicación de la encuesta; mientras que el 17.1% no logran cubrir completamente esta necesidad.

Eje de producción de arroz

En cuanto a la topografía de la finca y tipo de suelo utilizado para la producción de arroz, encontramos que el 70.7% de las fincas eran planas y el 29.2% ondulada. El 41.5% de los participantes de Panamá y Costa Rica manifestaron que la calidad del suelo es buena. En cuanto a la característica sobre humedad el 56.1% fueron suelos semihúmedos, 22.9% húmedos y 17.1% secos. Al separar por país encontramos variabilidad de estas características principalmente en Panamá y Nicaragua. Por otro lado, cabe destacar que el 56.1% de los productores entre Panamá y Nicaragua emplean el uso de al menos una técnica para la conservación del suelo, sobresaliendo principalmente el uso de barreras vivas y muertas.

El 68.3% de los participantes destinan la producción de arroz principalmente para el consumo familiar, el 24.4% lo venden y usan para consumo, mientras que el 7.3% la destinan exclusivamente a la venta, siendo esto solo en Nicaragua. El 63.4% manifestaron que las manos de obra en las actividades de producción son realizadas por todos los miembros de la familia.

Durante un año el 63.4% refirió llevar a cabo más de dos siembras, excepto en Costa Rica donde los participantes refirieron sólo sembrar una vez arroz en el año.

El uso de semillero para la siembra se encontró sólo se lleva a cabo por los productores en
Panamá, siendo este total del 41.5%. Más de la mitad de los productores refirieron que la distancia de siembra entre plantas oscila entre 20 a 25 centímetros. El 48.8% de los productores participantes emplean el sistema de siembra de arroz directa pregerminada, 29.3% fangueo por trasplante y el 22.0% emplea ambos sistemas. Al comparar por cada país, encontramos que en Costa Rica los productores participantes del proyecto emplean solamente el sistema de siembra directa.

En referencia al manejo del cultivo de arroz se encontró que el 85.4% de los productores emplean el uso de fertilizantes químicos; mientras que el 41.5% aplica abonos orgánicos, esto se dio en productores de Panamá. El 85.4% realiza el manejo en control de plagas, de los cuales el 57.1% emplea productos químicos; el control de enfermedades es llevado por el 65.9%, de los cuales 29.6% usa químicos y sólo el 7.4% usa alternativas orgánicas; en cuanto al control de malezas el 92.7% lo realiza, siendo el 23.7% con uso de químicos y 18.4% manualmente. El 82.9% de los productores manifiestan recibir asistencia técnica en sus países.

En cuanto a los rendimientos alcanzados en la producción de arroz el promedio en kilogramos referido por todos los productores participantes del proyecto es de 2,940 Kg. Estos rendimientos promedios presentaron una variabilidad para cada país, siendo para Panamá de 997 Kg, para Costa Rica de 3,987 Kg y para Nicaragua 3,836 Kg. Al comparar por país encontramos que el 70.7% del grupo de productores presentaron promedios bajos de rendimientos en la producción de arroz (<2,300 Kg), siendo estos bajos rendimientos mayormente en Panamá; por lo que aumentar la producción de arroz mediante la innovación de la tecnología y el empleo de técnicas amigables con el ambiente y la conservación de los recursos naturales es más que una alternativa para mejorar la seguridad alimentaria ya que busca de igual forma la conservación del medio ambiente. En cuanto a disponer de la producción de arroz para el consumo familiar en un año se encontró que 65.6% logra alcanzar cubrir esta necesidad, lo que es probable ya que más de la mitad de los participantes realizan dos ciclos de siembra al año.

Eje de manejo de agua

La principal fuente de agua empleada para la producción proviene de un río o quebrada, 87.8%. En cuanto al sistema empleado para riego el 87.8% manifestó este es por derivación, el 46.4% hace uso de tuberías y el 43.9% emplea equipo de riego. Al separar por país, encontramos que el sistema de riego mayormente usado por los tres países es por derivación. En base a la percepción de los productores, el 14.6% de estos consideran la disponibilidad de agua para la producción es alta, mientras que el 46.3% la consideran suficiente. El 73.2% inunda el terreno para la producción de arroz. El 75.6% refieren tener una distancia menor de 300 metros entre las parcelas de arroz con la fuente de agua.

Eje de organización comunitaria

El 68.3% de los productores pertenecen algún tipo de organización comunitaria. El 43.9% refieren haber participado de al menos un proyecto a nivel internacional. El 87.8% de los productores consideran como uno de los principales beneficios de estar organizados o participar grupalmente de proyectos consideran son las capacitaciones, el 48.8% que es el acceso a crédito, el 34.1% el beneficio de donaciones, 22.0% la facilidad para la comercialización y 12.2% el beneficio en acceso a becas.

Conclusiones y recomendaciones:

- El 48.8% recibe ingresos económicos por aportes de salarios y/o por apoyos sociales de los gobiernos, lo que implica que más de la mitad depende las actividades de la agricultura familiar para cubrir su alimentación.
- El 68.3% destinan la producción de arroz principalmente para el consumo familiar.
- El 48.8% de los productores emplean emplea el sistema de siembra directa pregerminada.
- Al comparar por país encontramos que el 70.7% del grupo de productores presentaron promedios bajos de rendimientos en la producción de arroz (<2300 Kg).
- El sistema empleado para riego el 87.8% es por derivación.
- El 68.3% de los productores están organizados a nivel comunitario.
- El aumento en la producción de arroz para la agricultura familiar mediante la innovación de la tecnología y el empleo de técnicas amigables con el ambiente y la conservación de los recursos naturales es más que una alternativa para mejorar la seguridad alimentaria ya que busca de igual forma la conservación del medio ambiente.
Anexo 2: Productos de difusión y capacitación

| Eventos | Participación en el Primer Congreso de Producción de Arroz de Panamá.
| Participación en medios | Entrevista radial realizada al Dr. José Yau con el tema: Proyecto de Sistema Intensivo del Cultivo Arroz en Panamá y la visita de los técnicos del INTA Costa Rica. Octubre 4, 2016.
| | Participación Dr. José Alberto Yau en programa de IDIAP, De Pura Cepa No.25, publicado el 07 de noviembre de 2017, informando sobre avances del Proyecto SICA/IDIAP/FONTAGRO. |
| Publicaciones en línea | Publicaciones en sitios web y medios sociales: FACEBOOK IDIAP Panamá \ https://www.facebook.com/search/top/?q=IDIAP%20Panam%C3%A1%20fontagro
Componente 3: Validación del SRI en los países

Actividad 3.1 Establecimiento de parcelas SRI en los países

Producto 3.1 Establecimiento de parcelas SRI en Panamá

INSTITUTO DE INVESTIGACIÓN AGROPECUARIA DE PANAMÁ

INFORME

“Proyecto de validación de prácticas agrícolas arroceras: SRI”

Elaborado por:

José I. Mejía Gutiérrez, Walker González y Ruth Del Cid, Maika Barría y José Yau

2018

<table>
<thead>
<tr>
<th>Título de la actividad de investigación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Validación de prácticas agrícolas arroceras: SRI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nombre del técnico investigador principal:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. José A. Yau</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nombre de los técnicos colaboradores:</th>
</tr>
</thead>
<tbody>
<tr>
<td>José Isaac Mejía G., Walker González, Ruth Del Cid, Jaime Arosemena, Fernando Fernández¹</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Resumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durante los ciclos agrícolas 2015-2016 y 2016-2017 se desarrollan actividades del proyecto de validación de prácticas agrícolas arroceras: SRI en el Centro de Investigación Agropecuaria de Recursos Genéticos-CIARG. Geográficamente está ubicado entre los 9°00’17” de Latitud Norte y entre los 79°49’34” de Longitud Oeste.</td>
</tr>
</tbody>
</table>

| Como parte de las actividades del tercer componente correspondiente a la “Validación del SRI”, se instalaron 14 parcelas de 100 m² cada una en el ciclo 2016-2017 y 16 parcelas en el ciclo 2017-2018, en las comunidades Niño de Jesús 2, Santa Cruz, Los Álveos, Las Gaitas, La Conga, Los Hules y Las Pavan, correspondiente a 16 productores de arroz para la validación del SRI junto con |

¹ Equipo técnico del SRI del IDIAP
la siembra tradicional entre los meses de agosto y septiembre. La variedad que se utilizó fue la GAB 11, correspondiente a los biofortificados con alto contenido nutricional (hierro y zinc).

Entre las evaluaciones agronómicas propias del ensayo que se realizaron; podemos destacar los siguientes: Conteo de Plantas, Vigor (Vg), Acamé (Ldg), Altura de la Planta (Ht). Además, como parte de la medición de daños ocasionados por enfermedades se realizaron tres (3) monitoreos a los 30 DDT, primordium y estado lechoso para evaluar la incidencia y severidad de Piricularia en la Hoja (B1), Piricularia en el Cuello (NB1), Escaldado de la Hoja (LSc), Helminthosporiosis (BS), Añublo de la Vaina (ShB), Hoja Blanca (Hb), Pudrición de la Vaina (ShR), Falso Carbón (FSm), Cercosporiosis (NBLs), Añublo Bacterial (BB). Para las variables de rendimiento se evaluaron: longitud de la panícula (mm), N° gramos, N° plantas / m², Humedad grano (%), Peso fresco (Kg), Peso de 1000 gramos (Kg). En la evaluación del manejo del agua se registraron los datos de precipitación, lámina de riego aplicada, consumo total de agua, eficiencia del uso del agua y ahorro de agua.

Resultados:
En el cuadro 1 se presenta el consolidado de las 14 localidades, ciclo 2016-2017

<table>
<thead>
<tr>
<th>Nº</th>
<th>Localidad</th>
<th>Productor</th>
<th>Vigor</th>
<th>Acame</th>
<th>N° macollos</th>
<th>N° panículas</th>
<th>Altura planta (m)</th>
<th>Rend (t/ha)</th>
<th>Uso agua kg.ha⁻¹.mm⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>PROD</td>
<td>SRI</td>
<td>PROD</td>
<td>SRI</td>
<td>PROD</td>
<td>SRI</td>
<td>PROD</td>
</tr>
<tr>
<td>1</td>
<td>Los Hules</td>
<td>R. Soto</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>13</td>
<td>13</td>
<td>12</td>
<td>1.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.27</td>
<td>6.68</td>
<td>7.93</td>
<td>5.36</td>
<td>6.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>las Pavas</td>
<td>S. Pérez</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>1.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.01</td>
<td>4.80</td>
<td>4.59</td>
<td>3.61</td>
<td>3.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>las Pavas</td>
<td>M. Ramos</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>11</td>
<td>11</td>
<td>9</td>
<td>0.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.11</td>
<td>2.92</td>
<td>5.66</td>
<td>2.21</td>
<td>4.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Los Hules</td>
<td>Y. Rodríguez</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>12</td>
<td>9</td>
<td>11</td>
<td>1.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.18</td>
<td>5.40</td>
<td>5.41</td>
<td>4.49</td>
<td>4.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Las Pavas</td>
<td>V. Pérez</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>11</td>
<td>10</td>
<td>1.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.18</td>
<td>4.50</td>
<td>4.48</td>
<td>4.09</td>
<td>4.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>La Conga</td>
<td>JC Navarro</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>9</td>
<td>6</td>
<td>1.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.97</td>
<td>3.36</td>
<td>3.22</td>
<td>3.95</td>
<td>4.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Las Gaitas</td>
<td>R. Gómez</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>1.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.88</td>
<td>3.99</td>
<td>2.25</td>
<td>4.20</td>
<td>5.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Las Gaitas</td>
<td>T. Gómez</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.96</td>
<td>7.33</td>
<td>4.09</td>
<td>2.85</td>
<td>4.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>La Honda</td>
<td>V Navarro</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.02</td>
<td>4.93</td>
<td>5.44</td>
<td>3.80</td>
<td>4.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Hijo de Dios 2</td>
<td>F. Pérez</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>12</td>
<td>9</td>
<td>12</td>
<td>1.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.10</td>
<td>4.31</td>
<td>5.87</td>
<td>5.36</td>
<td>6.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Sta. Cruz</td>
<td>I. Espinosa</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>11</td>
<td>9</td>
<td>11</td>
<td>1.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.09</td>
<td>3.31</td>
<td>3.41</td>
<td>3.80</td>
<td>6.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Sta. Cruz</td>
<td>S. Espinosa</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>13</td>
<td>8</td>
<td>13</td>
<td>1.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.13</td>
<td>5.03</td>
<td>5.25</td>
<td>5.40</td>
<td>6.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Los Alveos</td>
<td>C. Rodríguez</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.96</td>
<td>3.46</td>
<td>3.81</td>
<td>4.30</td>
<td>5.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Los Alveos</td>
<td>A. Rodríguez</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>15</td>
<td>11</td>
<td>15</td>
<td>1.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
<td>8.09</td>
<td>5.74</td>
<td>5.25</td>
<td>6.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Promedio</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.1</td>
<td>4.86</td>
<td>4.80</td>
<td>4.19</td>
<td>5.08</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intervalo confianza 99% ±3 ±2 ±1 ±0.10 ±0.25 ±1.26 ±1.14 ±0.76 ±0.79
Con relación al eficiente uso del agua, la parcela SRI mostró 5.08 kg. ha⁻¹ mm⁻¹ con respecto a la parcela convencional 4.19. Esta leve diferencia de la parcela SRI, se pudo deber a que ese año, 2016 fue muy lluvioso, con un promedio de 1,448 mm durante los meses de evaluación, manteniéndose la película de agua en la parcela SRI, dificultándose su drenaje, afectando los resultados esperados. En el cuadro 1 se presenta el intervalo de confianza al 99% de los componentes de rendimiento y eficiente uso del agua.

Al realizarse la prueba t, no se encontró diferencia significativa en el componente rendimiento entre ambos sistemas. Una posible explicación a este hecho, fue que, durante el ciclo de evaluación, hubo mucha precipitación, reduciendo el estrés por sequía de las plantas en ambos sistemas. De igual manera, debemos señalar que ambos sistemas fueron por trasplante manual, en condiciones de inundación, favoreció al desarrollo de las plantas.

<table>
<thead>
<tr>
<th>Prueba F para varianzas de dos muestras</th>
<th>Prueba t para dos muestras suponiendo varianzas iguales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Productor</td>
<td>SRI</td>
</tr>
<tr>
<td>Media</td>
<td>4.86</td>
</tr>
<tr>
<td>Varianza</td>
<td>2.44</td>
</tr>
<tr>
<td>Observaciones</td>
<td>14</td>
</tr>
<tr>
<td>Grados de libertad</td>
<td>13</td>
</tr>
<tr>
<td>F</td>
<td>1.22</td>
</tr>
<tr>
<td>P(F<=f) una cola</td>
<td>0.37</td>
</tr>
<tr>
<td>Valor crítico para F (una cola)</td>
<td>2.58</td>
</tr>
</tbody>
</table>

Figura 1. Prueba F y prueba t para varianza de dos muestras suponiendo que son iguales

En el cuadro 2 se presenta el consolidado de evaluación de enfermedades las 14 localidades, ciclo 2016-2017.

Tratándose de un año lluvioso, se crearon las condiciones para el ataque de enfermedades, fungosas y bacterianas al follaje. En términos generales, en el cuadro 2 se puede observar que las parcelas SRI mostraron un mejor comportamiento a estas 11 enfermedades considerando que no se le aplicaron productos fitosanitarios de síntesis química.
<table>
<thead>
<tr>
<th>Nº</th>
<th>Localidad</th>
<th>Productor</th>
<th>Piricularia hoja (Bl)</th>
<th>Piricularia cuello (NBI)</th>
<th>Helmintos poriosis (Bs)</th>
<th>Cercosporosis (NBLS)</th>
<th>Escaldado hoja (LSc)</th>
<th>Añublo bacterial (BB)</th>
<th>Hoja blanca (Hb)</th>
<th>Añublo vaina (SHB)</th>
<th>Pudrición vaina (ShR)</th>
<th>Manchado grano (GID)</th>
<th>Falso carbon (FSm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Los Hules</td>
<td>R. Soto</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>las Pavas</td>
<td>M. Ramos</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>las Pavas</td>
<td>R. Soto</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Lso Hules</td>
<td>Y. Rodriguez</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>las Pavas</td>
<td>V. Perez</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>La Conga</td>
<td>JC. Navarro</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Las Gaitas</td>
<td>R. Gomez</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Las Gaitas</td>
<td>T. Gomez</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>La Honda</td>
<td>V. Navarro</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Hijo de Dios</td>
<td>F. Perez</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>Sta. Cruz</td>
<td>I. Espinosa</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>Sta. Cruz</td>
<td>S. Espinosa</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>Los Alveos</td>
<td>C. Rodriguez</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>Los Alveos</td>
<td>A. Rodriguez</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Cuadro 2. Consolidado de evaluación de enfermedades en las 14 localidades, 2016-2017

Prod	SRI																								
1		1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2		1	1	1	1	3	1	0	0	0	0	0	1	1	1	0	0	1	1	1	1	1	1	1	1
3		1	1	1	1	1	1	0	0	0	0	1	1	1	1	1	1	0	0	1	1	1	5		
4		1	1	1	1	1	1	1	3	0	0	0	2	1	3	0	1	0	1	0	1	1			
5		1	1	1	1	1	1	0	0	1	1	0	0	1	1	0	0	0	0	0	1	0			
6		1	1	1	1	1	1	0	1	0	0	0	1	1	1	0	0	0	1	1	1	1			
7		3	1	3	2	2	2	2	0	1	1	1	2	1	1	2	1	1	1	2	1	2			
8		1	1	1	1	1	1	0	1	0	0	0	1	1	1	0	0	0	1	1	1				
9		3	1	3	2	2	2	2	2	0	1	1	1	2	1	1	2	1	1	1	2				
10		1	1	3	1	3	3	3	3	1	0	1	1	1	1	1	1	1	1	1	3	3			
11		3	1	3	3	3	3	3	3	0	3	0	3	1	1	0	1	0	1	0	3	3			
12		5	1	3	1	0	1	3	3	0	0	0	0	1	3	3	3	0	0	0					
13		3	3	3	3	1	1	3	1	0	1	1	1	1	1	1	3	1	1						
14		1	1	3	1	3	1	1	1	0	0	3	3	1	0	3	1	0	1	0	3				

Cuadro 2. Consolidado de evaluación de enfermedades en las 14 localidades, 2016-2017
En el cuadro 3 se presenta el consolidado de las 16 localidades del ciclo 2017-2018. Al realizársele la prueba t, (figura 2) no hubo diferencia significativa en el componente rendimiento, presentándose igual situación del ciclo anterior. De igual manera, se presentan el intervalo de confianza al 99% en los componentes de rendimiento y eficiente uso del agua.

<table>
<thead>
<tr>
<th>Prueba F para varianzas de dos muestras</th>
<th>Prueba t para dos muestras suponiendo varianzas iguales</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Productor</td>
</tr>
<tr>
<td>Media</td>
<td>5.19</td>
</tr>
<tr>
<td>Varianza</td>
<td>3.93</td>
</tr>
<tr>
<td>Observaciones</td>
<td>16</td>
</tr>
<tr>
<td>Grados de libertad</td>
<td>15</td>
</tr>
<tr>
<td>F</td>
<td>2.09</td>
</tr>
<tr>
<td>P(F<=f) una cola</td>
<td>0.08</td>
</tr>
<tr>
<td>Valor crítico para F (una cola)</td>
<td>2.40</td>
</tr>
<tr>
<td>Diferencia hipotética de las medias</td>
<td>0.00</td>
</tr>
<tr>
<td>Grados de libertad</td>
<td>26</td>
</tr>
<tr>
<td>Estadístico t</td>
<td>-1.09</td>
</tr>
<tr>
<td>P(T<=t) una cola</td>
<td>0.14</td>
</tr>
<tr>
<td>Valor crítico de t (una cola)</td>
<td>1.71</td>
</tr>
<tr>
<td>P(T<=t) dos colas</td>
<td>0.28</td>
</tr>
<tr>
<td>Valor crítico de t (dos colas)</td>
<td>2.06</td>
</tr>
</tbody>
</table>

Figura 2. Prueba F y prueba t para varianza de dos muestras suponiendo que son iguales
Cuadro 3. Consolidado de las 16 localidades, 2017-2018

<table>
<thead>
<tr>
<th>Nº</th>
<th>Localidad</th>
<th>Productor</th>
<th>Vigor</th>
<th>Acame</th>
<th>N° macollos</th>
<th>N° panículas</th>
<th>Altura planta (cm)</th>
<th>Rend (t/ha)</th>
<th>Eficiencia en el uso agua kg/ha·mm⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>PROD</td>
<td>SRI</td>
<td>PROD</td>
<td>SRI</td>
<td>PROD</td>
<td>PROD</td>
<td>PROD</td>
</tr>
<tr>
<td>1</td>
<td>Los Hules</td>
<td>R. Soto</td>
<td>1 1</td>
<td>1 1</td>
<td>34 14</td>
<td>33 14</td>
<td>127.0 120.0</td>
<td>9.20 7.40</td>
<td>8.7548 7.2633</td>
</tr>
<tr>
<td>2</td>
<td>Las Pavas</td>
<td>S. Pérez</td>
<td>1 1</td>
<td>3 3</td>
<td>10 10</td>
<td>10 10</td>
<td>131.0 133.0</td>
<td>4.40 5.00</td>
<td>6.2541 7.1135</td>
</tr>
<tr>
<td>3</td>
<td>Las Pavas</td>
<td>M. Ramos</td>
<td>1 1</td>
<td>1 1</td>
<td>17 17</td>
<td>16 17</td>
<td>126.0 130.0</td>
<td>7.40 5.80</td>
<td>6.2889 5.3472</td>
</tr>
<tr>
<td>4</td>
<td>Los Hules</td>
<td>Zaida Lorenzo</td>
<td>1 1</td>
<td>3 3</td>
<td>21 20</td>
<td>21 20</td>
<td>126.0 119.0</td>
<td>5.00 6.00</td>
<td>3.1628 4.2529</td>
</tr>
<tr>
<td>5</td>
<td>Las Pavas</td>
<td>V. Pérez</td>
<td>1 1</td>
<td>3 3</td>
<td>16 13</td>
<td>14 12</td>
<td>126.0 120.0</td>
<td>4.00 4.70</td>
<td>5.7603 6.7301</td>
</tr>
<tr>
<td>6</td>
<td>La Conga</td>
<td>JC Navarro</td>
<td>5 3</td>
<td>0 0</td>
<td>7 9</td>
<td>6 7</td>
<td>100.0 87.5</td>
<td>3.12 3.20</td>
<td>3.2280 1.5940</td>
</tr>
<tr>
<td>7</td>
<td>Las Gaitas</td>
<td>R. Gómez</td>
<td>3 3</td>
<td>0 0</td>
<td>5 6</td>
<td>5 6</td>
<td>106.0 88.0</td>
<td>2.30 4.00</td>
<td>1.7650 8.2900</td>
</tr>
<tr>
<td>8</td>
<td>Las Gaitas</td>
<td>T. Gómez</td>
<td>3 3</td>
<td>0 0</td>
<td>6 6</td>
<td>6 6</td>
<td>107.0 95.9</td>
<td>4.10 7.30</td>
<td>3.4500 4.0200</td>
</tr>
<tr>
<td>9</td>
<td>La Honda</td>
<td>V Navarro</td>
<td>3 3</td>
<td>0 0</td>
<td>9 9</td>
<td>9 9</td>
<td>95.6 98.0</td>
<td>4.90 5.40</td>
<td>3.8800 6.1600</td>
</tr>
<tr>
<td>10</td>
<td>Hijo de Dios 2</td>
<td>F. Pérez</td>
<td>1 1</td>
<td>1 1</td>
<td>9 7</td>
<td>9 7</td>
<td>130.0 132.0</td>
<td>5.20 5.80</td>
<td>4.2344 4.7548</td>
</tr>
<tr>
<td>11</td>
<td>Hijo de Dios 2</td>
<td>L. Pérez</td>
<td>1 1</td>
<td>1 1</td>
<td>7 9</td>
<td>7 9</td>
<td>122.0 123.0</td>
<td>4.50 5.80</td>
<td>3.7011 4.7764</td>
</tr>
<tr>
<td>12</td>
<td>Hijo de Dios 2</td>
<td>R. Pérez</td>
<td>3 1</td>
<td>3 1</td>
<td>9 9</td>
<td>9 9</td>
<td>125.0 129.0</td>
<td>4.80 4.40</td>
<td>3.9120 3.5984</td>
</tr>
<tr>
<td>13</td>
<td>Sta. Cruz</td>
<td>I. Espinosa</td>
<td>3 1</td>
<td>1 1</td>
<td>7 17</td>
<td>7 17</td>
<td>120.0 115.0</td>
<td>5.40 7.60</td>
<td>4.2032 5.9650</td>
</tr>
<tr>
<td>14</td>
<td>Sta. Cruz</td>
<td>S. Espinosa</td>
<td>3 1</td>
<td>1 1</td>
<td>9 11</td>
<td>9 11</td>
<td>100.0 109.0</td>
<td>4.70 5.30</td>
<td>3.2228 3.6789</td>
</tr>
<tr>
<td>15</td>
<td>Los Álveos</td>
<td>C. Rodríguez</td>
<td>1 1</td>
<td>1 1</td>
<td>9 9</td>
<td>9 9</td>
<td>130.0 130.0</td>
<td>4.30 5.30</td>
<td>3.0311 3.7141</td>
</tr>
<tr>
<td>16</td>
<td>Los Álveos</td>
<td>A. Rodríguez</td>
<td>3 3</td>
<td>1 1</td>
<td>13 14</td>
<td>13 14</td>
<td>130.0 127.0</td>
<td>9.70 8.20</td>
<td>6.7811 5.7306</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Promedio</th>
<th>PROD</th>
<th>SRI</th>
<th>PROD</th>
<th>SRI</th>
<th>PROD</th>
<th>SRI</th>
<th>PROD</th>
<th>SRI</th>
<th>PROD</th>
<th>SRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>±1</td>
<td>±1</td>
<td>±1</td>
<td>±1</td>
<td>±1</td>
<td>±5</td>
<td>±3</td>
<td>±5</td>
<td>±3</td>
<td>±9</td>
<td>±12</td>
</tr>
<tr>
<td>±1</td>
<td>±1</td>
<td>±1</td>
<td>±1.3260</td>
<td>±1.2671</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Con relación al eficiente uso del agua, la parcela SRI mostró 5.19 kg. ha⁻¹·mm⁻¹ con respecto a la parcela convencional 4.48. Esta leve eficiencia de la parcela SRI, se puede deber a que ese año, 2017, al igual al año anterior, fue muy lluvioso con un promedio de 1,224 mm de precipitación durante los meses de evaluación, manteniéndose, la película de agua en la parcela SRI, dificultándose su drenaje, al final, afectando los resultados esperados. En ambos años no se pudo aplicar el método AWD (alternar condiciones húmedas y seca), también conocido como riego intermitente.

Debido a esta situación y considerando que la STA, nos extendió por seis meses la finalización del proyecto, hemos establecido cuatro parcelas SRI y cuatro parcelas convencionales durante la
estación seca 2018, para medir el efecto del método AWD, debido a que en esta época del año podemos eliminar el efecto de las lluvias.
En el cuadro 4 se presenta el consolidado de evaluación de enfermedades en las 16 localidades en el ciclo 2017-2018.

<table>
<thead>
<tr>
<th>Nº</th>
<th>Localidad</th>
<th>Productor</th>
<th>Piricularia hoja (Bl)</th>
<th>Piricularia cuello (NBBl)</th>
<th>Helmintosporiosis (Ns)</th>
<th>Cercosporosis (NBLS)</th>
<th>Escaldado hoja (LSc)</th>
<th>Añublo bacterial (BB)</th>
<th>Hoja blanca (Hb)</th>
<th>Añublo vaina (SHB)</th>
<th>Pudricción vaina (ShR)</th>
<th>Manchado grano (GID)</th>
<th>Falso carbon (FSm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Los Hules</td>
<td>R. Soto</td>
<td>1 1 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Las Pavas</td>
<td>S. Perez</td>
<td>2 2 1 3 2 2 0 0 0 0 0 0 0 0 0 0 1 1 3 1 1 1 1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Las Pavas</td>
<td>M. Ramos</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Los Hules</td>
<td>Z. Lorenzo</td>
<td>1 1 1 1 1 1 1 1 3 3 1 1 1 1 3 1 1 3 1 1 3 1 1 3 3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Las Pavas</td>
<td>V. Perez</td>
<td>1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 1 1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>La Conga</td>
<td>JC Navarro</td>
<td>1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 1 1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Las Gaitas</td>
<td>R. Gomez</td>
<td>4 2 1 1 3 2 3 1 4 2 2 2 2 2 2 2 2 2 1 3 2 2 2 2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Las Gaitas</td>
<td>T. Gomez</td>
<td>1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>La Honda</td>
<td>V. Navarro</td>
<td>3 1 1 1 4 1 1 1 3 3 3 3 1 3 3 3 3 3 3 3 3 3 1 3 3</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Hijo de Dios 2 F. Perez</td>
<td>3 1 1 1 5 1 1 1 3 3 3 3 1 3 3 3 3 3 3 3 3 3 1 3 3</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Hijo de Dios 2 F. Perez</td>
<td>5 3 1 1 3 1 3 1 3 1 3 3 3 1 1 3 1 1 3 1 1 3 1 1 1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Hijo de Dios 2 F. Perez</td>
<td>3 3 1 1 5 1 3 1 3 1 1 1 1 1 1 1 1 1 3 1 3 3 1 3 1</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Sta. Cruz Tulú I. Espinosa</td>
<td>3 3 1 1 3 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 3 1 3 1</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Sta. Cruz Tulú S. Espinosa</td>
<td>5 3 1 3 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Los Alveos</td>
<td>C. Rodriguez</td>
<td>5 3 3 1 3 5 3 3 13 3 3 3 3 3 1 1 3 1 3 1 3 1 3 3</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Los Alveos</td>
<td>A. Rodriguez</td>
<td>1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 3 3 1 1 3 3 3 3 3</td>
<td></td>
</tr>
</tbody>
</table>
En términos generales, se puede observar que el comportamiento de la parcela SRI, al ataque de enfermedades al follaje, paniculas y granos del arroz, fue mejor que la parcela convencional, considerando que las parcelas SRI no se le aplica producto fitosanitario de síntesis química, representando un valor que debemos considerar a este sistema de producción.

En el cuadro 5, se presentan los costos de insumos, mano de obra, uso de semilla utilizados en las parcelas SRI en comparación a la parcela convencional. Puede observarse que el costo de producción de la parcela SRI fue menor en los tres componentes debido a que solo en este sistema se emplean productos orgánicos que prepara el productor en su finca.

Cuadro 5. Costos de insumos, mano de obra, semilla en la parcela SRI y convencional, en cuatro localidades, 2017-2018

<table>
<thead>
<tr>
<th>N°</th>
<th>Localidad</th>
<th>Productor</th>
<th>Costo insumos USD</th>
<th>Costo MO USD</th>
<th>Uso semilla gr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>PROD</td>
<td>SRI</td>
<td>PROD</td>
</tr>
<tr>
<td>1</td>
<td>La Conga</td>
<td>JC Navarro</td>
<td>2250</td>
<td>1854</td>
<td>288</td>
</tr>
<tr>
<td>2</td>
<td>Las Gaitas</td>
<td>R. Gómez</td>
<td>1745</td>
<td>1608</td>
<td>270</td>
</tr>
<tr>
<td>3</td>
<td>Las Gaitas</td>
<td>T. Gómez</td>
<td>1745</td>
<td>1608</td>
<td>270</td>
</tr>
<tr>
<td>4</td>
<td>La Honda</td>
<td>V Navarro</td>
<td>1105</td>
<td>900</td>
<td>504</td>
</tr>
<tr>
<td></td>
<td>Promedio</td>
<td></td>
<td>1711</td>
<td>1493</td>
<td>333</td>
</tr>
</tbody>
</table>

Con el interés de determinar el efecto del uso de compost en las parcelas con el SRI con más de dos ciclos continuos de siembra, se instaló un ensayo para evaluar bajo condiciones de laboratorio, la influencia de parámetros físico-químicos (humedad, temperatura y pH) sobre la actividad microbiana en un suelo agrícola medida por la cuantificación de la producción de CO$_2$ y actividad deshidrogenasa. Los resultados se presentan a continuación.

Ensayo de la actividad microbiana de suelos con el SRI

Existen diversos parámetros considerados clave para determinar la calidad del suelo, aquellos de naturaleza física y físico-química (estabilidad de agregados, pH, conductividad eléctrica), química (parámetros nutricionales y fracciones de carbono), como del tipo microbiológico y bioquímico (carbono de biomasa microbiana, respiración microbiana o diversas actividades enzimáticas). El componente microbiológico puede servir como indicador del estado general del suelo, pues una buena actividad microbiana en suelo es reflejo de condiciones físico-químicas óptimas para el desarrollo de los procesos metabólicos de microorganismos (bacterias, hongos, algas, actinomicetos) que actúan sobre sustratos orgánicos y cultivos asociados; y constituye un marcador biológico potencialmente útil para evaluar las perturbaciones que puedan presentarse. Es muy importante en el desarrollo y funcionamiento de los ecosistemas y su fertilidad, pues interviene tanto en el establecimiento de los ciclos biogeoquímicos, como en la formación de la estructura de los suelos. El presente estudio se realizó con la finalidad de evaluar bajo condiciones de laboratorio, la influencia de parámetros físico-químicos (humedad, temperatura y pH) sobre la actividad microbiana en un suelo agrícola medida por la cuantificación de la producción de CO$_2$ y actividad deshidrogenasa. Se realizaron
por separado, ensayos para suelos cultivados bajo el sistema convencional de cultivo de arroz y el sistema intensivo de cultivo de arroz (SRI).

Resultados

Los mayores valores de actividad microbiana se obtuvieron en suelos cultivados de arroz bajo el sistema SRI (con una humedad cercana al 15%) valores por encima de 18% mostraban saturación del suelo, pues un incremento en el agua del suelo reduce el estado de aireación por reducción del espacio de los poros llenos de aire disponibles para la difusión de gases, en condiciones estándares de temperatura y pH; se encontró que la temperatura de 27,5°C era óptima para producción de CO₂. Mientras que para la actividad enzimática deshidrogenasa (transformación de cloruro de tetrafenil tetrazolio (TTC) a trifénil formazán) fue mayor en los suelos inundados del sistema convencional de cultivo de arroz que en suelos bajo sistema SRI, debido a la disminución del potencial redox, lo cual podría explicarse en función de las condiciones hipóxicas de estos suelos.

Conclusiones

- El SRI presenta en términos generales, ciertas ventajas sobre la siembra convencional por trasplante manual el cual utilizamos para comparar.
- Las condiciones de precipitación en ambos años de validación del SRI, con promedio de 1,220 mm durante los meses en que se realizó la evaluación, permitieron una leve diferencia en la eficiencia del uso del agua en la parcela con el SRI.
- Las parcelas SRI presentaron una mejor sanidad al follaje, panícula y grano comparada a la parcela convencional, si consideramos que, en la primera, no se emplean productos fitosanitarios de síntesis química, añadiéndole un valor a este sistema.
- En la parcela SRI se utilizó menos semilla y presentó menor costo en tres renglones (compra de insumos, mano de obra empleada y uso de semilla) que la parcela convencional de trasplante manual.
- Mayor actividad microbiana entre un 42 mg de CO₂.100 g⁻¹ en la parcela SRI a los 33 mg CO₂. 100 g⁻¹ de la parcela del productor.
- Mayor actividad enzimática deshidrogenasa 0.083 de la formazán x gramo de suelo seco en la parcela del productor a 0.041 de formazán x gramo de suelo seco en la parcela SRI.

Recomendaciones

- Establecer parcelas de validación durante la estación seca (diciembre a abril) para determinar el efecto del método de riego AWD (riego intermitente)
- Realizar ensayos de emisión de GIS en parcelas SRI en comparación de la parcela convencional.
- Realizar ensayos de respiración y deshidrogenasa para determinar la presencia de microbiota del suelo en la parcela SRI comparada a la convencional.
- Aumentar de un ciclo de siembra actual, a tres al año para mejorar la disponibilidad de arroz durante los 12 meses y lograr excedentes para comercializar como arroz orgánico.
- Realizar las consultas ante la Autoridad de Control y Certificación Pública Orgánica del país a fin de incluir a los productores colaboradores del proyecto en este sistema con la cual lograrán mejorar su ingreso familiar al comercializar este producto la cual tiene una alta demanda.
- Iniciar el escalamiento y masificación del SRI a otras regiones del país, procurando apoyo del Ministerio de Desarrollo Agropecuario y otras entidades crediticias de fomento, considerando que el Gobierno Nacional promulgó la Ley N° 17 de 22 de febrero de 2018, declara al arroz como cultivo de seguridad alimentaria nacional.

- Con el apoyo de FONTAGRO, los tres países que integran esta plataforma (Costa Rica, Nicaragua y Panamá), dispondrán en los próximos meses, de trasplantadoras, desyerbadoras y llenadoras de bandejas mecánicas para iniciar la transferencia del SRI modificado a sistemas mecanizados con mayor superficie.