Informe documental de individuos capacitados en talleres, días de campo, seminarios y otras actividades realizadas en el proyecto

I Simposio Intensificación sostenible de la fruticultura andina- Jornada de la tarde [2020]

Carlos Eduardo Orrego Alzate, Mayra Steffani Diaz López (compiladores)
Códigos JEL: Q16

FONTAGRO (Fondo Regional de Tecnología Agropecuaria) es un programa de cooperación administrado por el Banco Interamericano de Desarrollo (BID), pero con su propia membresía, estructura de gobernabilidad y activos. Las opiniones expresadas en esta publicación son de los autores y no necesariamente reflejan el punto de vista del Banco Interamericano de Desarrollo, FONTAGRO, de sus Directorios Ejecutivos ni de los países que representan.

El presente documento ha sido preparado por los Eduardo Orrego Alzate, Mayra Steffani Diaz López

Copyright © 2020 Banco Interamericano de Desarrollo. Esta obra se encuentra sujeta a una licencia CreativeCommons IGO 3.0 Reconocimiento-NoComercial- SinObrasDerivadas (CC-IGO 3.0 BY-NC-ND) (http://creativecommons.org/licenses/by-nc-nd/3.0/igo/legalcode) y puede ser reproducida para cualquier uso no comercial otorgando el reconocimiento respectivo al BID. No se permiten obras derivadas. Cualquier disputa relacionada con el uso de las obras del BID que no pueda resolverse amistosamente se someterá a arbitraje de conformidad con las reglas de la CNUDMI (UNCITRAL). El uso del nombre del BID para cualquier fin distinto al reconocimiento respectivo y el uso del logotipo del BID no está autorizado sin un acuerdo de licencia adicional. Note que el enlace URL incluye términos y condiciones adicionales de esta licencia.

Esta publicación puede solicitarse a:

FONTAGRO
Banco Interamericano de Desarrollo
1300 New York Avenue, NW, Stop W0908
Washington, D.C., 20577
Correo electrónico: fontagro@iadb.org
Tel: 1 (202) 623-3876/3242
www.fontagro.org
Índice de Contenido

Agradecimientos ... 7
Instituciones participantes .. 8
Desafío.. 11
Equipo de Trabajo ... 12
Agenda ... 13
Presentaciones ... 14
Presentación 4. Impacto de la COVID-19 en las cadenas de valor agroalimentario [Ph.D. Víctor Falguera] ... 18
Presentación 5. La energía solar en la agroindustria [Ph.D. Francisco Fonseca] ... 19
Presentación 13. Bioprospección de aguacate y pasifloras [PhD. Coralía Osorio]	27
Presentación 14. Cadenas frutícolas andinas y agricultura familiar [PhD. Carlos Orrego]	28
Lecciones aprendidas	29
Conclusiones	30
Referencias	31
Biografías de los participantes	34
Índice de Gráficos

Gráfico 1. Evolución de la siembra de plántulas de Aguacate ... 15
Gráfico 2. Obtención de bioplásticos a partir de residuos de aguacate .. 16
Gráfico 3. Cultivos de aguacate en Caldas .. 17
Gráfico 4. Cultivos de aguacate en Caldas .. 18
Gráfico 5. Mujeres capacitadas .. 19
Gráfico 6. Cultivos de aguacate en Caldas .. 20
Gráfico 7. Aguacate colombiano .. 21
Gráfico 8. Distribución de la emisión de gases de efecto invernadero por sector económico. Fuente: EPA. ... 22
Gráfico 9. Estado de madurez de la Gulupa .. 23
Gráfico 10. Parámetros para determinar la madurez de la naranja .. 24
Gráfico 11. Citricos y aguacate en Colombia .. 25
Gráfico 12. Metodología y el análisis LCA de tres escenarios ... 26
Gráfico 13. Concepto de bioprospección ... 27
Gráfico 14. Resultados proyecto Productividad y competitividad frutícola andina a corte 2020 28
Agradecimientos

El proyecto “Productividad y Competitividad Frutícola Andina” (2017-2020) es una cooperación técnica de FONTAGRO, ejecutada por la Universidad Nacional de Colombia (UNC), el Instituto Interamericano de Cooperación para la Agricultura (IICA) Ecuador, FLP Procesados (FLP) Colombia y Agricultural Knowledge and Innovation Systems (AKIS) España. Participan como aliados el Instituto Nacional de Investigaciones Agropecuarias (INIAP) de Ecuador y el Servicio Nacional de Aprendizaje (SENA) de Colombia.

El I simposio de intensificación sostenible de la fruticultura andina fue realizado como parte de las actividades de diseminación del proyecto financiado por FONTAGRO. En esta memoria se hace un agradecimiento especial a las instituciones vinculadas dentro de la investigación, así como profesionales y entidades que se relacionaron para compartir su aprendizaje y experiencia en la fruticultura andina. Las entidades se mencionan a continuación:

✓ Golden sweet spirit, Ecuador
✓ Ingredalia
✓ Asociación Hortifrutícola de Colombia
✓ Agrosavia
Instituciones participantes
Introducción

La creciente demanda mundial de productos más saludables, orgánicos y limpios ha logrado posicionar las frutas como el alimento ideal para todo tipo de consumidores. Las frutas además de ricas en vitaminas y minerales son prácticas a la hora de consumir y con sabores únicos de acuerdo con la variedad propia de cada zona. La región andina es afortunada debido a la ubicación que permite el cultivo de frutas de tropicales que son muy apeteadas nacional e internacionalmente. Para el proyecto Productividad y competitividad frutícola andina es importante el posicionamiento de cítricos, pasifloras y aguacate, tres especies con cualidades nutricionales y organolépticas excepcionales.

Este panorama nos implica un reto actual que se constituye en suplir la demanda alimentaria con productos de calidad, pero siendo respetuosos con nuestro entorno y con el medioambiente, y en este aspecto se constituyen importantes retos para la agricultura a nivel mundial, dado que la inminente escasez del agua incluso en países de Latinoamérica donde existe actualmente abundancia del recurso, pero una evidente falta de estrategia para la gestión y la gobernanza del agua de consumo. Este es solo un ejemplo de todos los retos a los que se enfrenta la producción de alimentos a nivel global, es por esto por lo que es urgente crear estrategias y dinámicas que permitan cultivar de manera sostenible la valiosa diversidad en la fruticultura andina.

El proyecto “Productividad y Competitividad Frutícola Andina”, a través de sus investigadores o mediante especialistas invitados ha buscado tejer puentes en la cadena de valor de la agricultura regional mejorando condiciones técnicas que apunten a un crecimiento justo y sostenible de cada eslabón de la cadena, desde el cultivo hasta el aprovechamiento de residuos propios de la transformación.
Antecedentes

El proyecto “Productividad y Competitividad Frutícola Andina” (2017-2020) es la segunda fase de una cooperación técnica financiada por FONTAGRO, que se ha desarrollado en tres países Andinos. El primer proyecto se tituló “Modelo de plataforma para el uso integral, adición de valor y competitividad de frutales comerciales andinos” (2014 – 2017). Han participado como co-ejecutores AGROSÁVIA, FRUGY y SENA (Colombia), INIAP e IICA (Ecuador), y AKIS e IRTA (España), junto con la empresa FLP que tiene presencia en Colombia, Ecuador y Perú. La coordinación se ha hecho desde el Instituto de Biotecnología y Agroindustria de la Universidad Nacional de Colombia- Manizales.

Debido a la contingencia mundial generada por el virus COVID-19, las actividades del proyecto fueron reprogramadas para llevarse a cabo de manera virtual, en el transcurso de 2020 se realizaron webinar y seminarios virtuales para garantizar compartir el conocimiento de investigadores entre el sector interesado. Es así, como en el último trimestre del año se realizó el “I Simposio de intensificación sostenible de la fruticultura andina” en el cual se reunieron más de 300 asistentes virtuales de diferentes nacionalidades. Entre workshops y ponencias de invitados con resultados del proyecto y temas de interés, se creó un espacio para relacionar la agricultura, la investigación y la empresa como ejes articulados que impulsen la fruticultura andina en Latinoamérica y el mundo.
Desafío

La agricultura tiene retos importantes que permitan lograr un equilibrio entre producción de calidad, mejoras en el aprovechamiento de la fruta y la posibilidad de lograr estas premisas garantizando el trato respetuoso y justo con el medioambiente y las comunidades que están involucradas. Profundizando sobre el tema, la sostenibilidad consiste en garantizar la producción responsable económica, social y ambientalmente, así que este término ha convertido a los consumidores locales en clientes más exigentes quienes no solo se preocupan por la calidad del alimento sino por la historia detrás de su producción, comercialización e incluso su desecho.

A través del proyecto “Productividad y Competitividad Frutícola Andina” los actores participantes buscan generar alternativas que permitan contribuir a la producción sostenible de las tres especies de interés, pasifloras, cítricos y aguacate. Algunas de las actividades que se han realizado consisten en optimizar el riego de los cultivos incluyendo su fertilización simultáneamente, así como la agregación de valor a productos de rechazo por considerarse de menor calidad y ampliación de la vida útil de los derivados frutales.

Es largo el camino por recorrer, por eso se desarrolló el I Simposio sobre intensificación sostenible de la fruticultura andina, en este evento se encontraron académicos, industriales y agricultores quienes pudieron interrelacionar conocimientos, compartir ideas y continuar en conjunto con este proyecto que busca impulsar la fruticultura en la región andina.
Equipo de Trabajo

✓ Ingredalia: PhD. Miguel Angel Cubero

✓ Instituto Nacional de Investigaciones Agropecuarias de Ecuador (INIAP): MSc. William Viera, MSc. Beatriz Brito

✓ Universidad Nacional de Colombia: PhD. Carlos Eduardo Orrego Alzate, PhD. Carlos Ariel Cardona, PhD. Coralia Osorio, investigadores del grupo dde investigación en alimentos frutales (GAF)

✓ Servicio Nacional de Aprendizaje (SENA): MSc. Laura Bermeo, PhD. Valentina Hernández, Esp. Germán Antia

✓ Golden sweet spirit: Ing. Dennis Brito Madrid

✓ Asohofrucol: Esp. Silvio Ríos

✓ AKIS International: VictorFalguera Pascual, Fran García

✓ AGROSAVIA: PhD. Jorge Alonso Bernal, PhD. Javier Orlando Orduz

✓ FLP Procesados: Ing. Angélica Cardona
Agenda

El I simposio de intensificación sostenible de la fruticultura se desarrolló entre el 19 y 20 de noviembre del 2020, de manera virtual por la plataforma Peewah con una asistencia de 311 personas. A continuación, se detalla la agenda llevada a cabo durante los dos días que duró el evento.

<table>
<thead>
<tr>
<th>SESIÓN 1 (MÁNANA)</th>
<th>HORA</th>
<th>ACTIVIDAD</th>
<th>PONENTE</th>
<th>NOMBRE DE LA PONENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:45 am - 9:00 am</td>
<td>Apertura</td>
<td>Director del proyecto: Carlos Eduardo Orrego</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 am - 12pm (una sola sesión de 3 horas)</td>
<td>Workshop</td>
<td>Miguel Angel Cubero</td>
<td>"Agregación de valor de residuos de frutales"</td>
<td></td>
</tr>
<tr>
<td>2:30 pm - 2:40 pm</td>
<td>Apertura</td>
<td>Director del proyecto: Carlos Eduardo Orrego</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:40 pm - 3:00 pm</td>
<td>Ponencia</td>
<td>William Viera</td>
<td>"El Aguacate, cultivo sustentable con potencial en Ecuador"</td>
<td></td>
</tr>
<tr>
<td>3:00 pm - 3:20 pm</td>
<td>Ponencia</td>
<td>Beatriz Brito</td>
<td>"Agregación de valor al aguacate en estado fresco y procesado"</td>
<td></td>
</tr>
<tr>
<td>3:20 pm - 3:50 pm</td>
<td>Ponencia Invitado 1</td>
<td>Silvio Rios</td>
<td>"El reto de los frutales en Caldas"</td>
<td></td>
</tr>
<tr>
<td>3:50 pm - 4:10 pm</td>
<td>Ponencia</td>
<td>Víctor Falguera</td>
<td>"Impacto de la COVID-19 en las cadenas de valor agroalimentaria"</td>
<td></td>
</tr>
<tr>
<td>4:10 pm - 4:30 pm</td>
<td>Ponencia</td>
<td>Francisco Fonseca</td>
<td>"La energía solar en la agroindustria"</td>
<td></td>
</tr>
<tr>
<td>4:30 pm - 5:00 pm</td>
<td>Ponencia Invitado 2</td>
<td>Dennis Brito Madrid</td>
<td>"Generación de cadenas productivas sustentables en frutales nativos de Ecuador"</td>
<td></td>
</tr>
<tr>
<td>5:30 pm – 6:00 pm</td>
<td>Ponencia Invitado 4</td>
<td>Jorge Bernal- AGROSAVIA</td>
<td>"Importancia del cultivo del aguacate en Colombia"</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESIÓN 2 (TARDE)</th>
<th>HORA</th>
<th>ACTIVIDAD</th>
<th>PONENTE</th>
<th>NOMBRE DE LA PONENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:45 am - 9:00 am</td>
<td>Apertura</td>
<td>Director del proyecto: Carlos Eduardo Orrego</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 am - 12pm (una sola sesión de 3 horas)</td>
<td>Workshop</td>
<td>Javier Orlando Orduz</td>
<td>"Producción limpia y sostenible de cítricos"</td>
<td></td>
</tr>
<tr>
<td>2:15 pm - 2:35 pm</td>
<td>Ponencia</td>
<td>Valentina Hernández</td>
<td>"Huella de Carbono en el Cultivo de Gulupa"</td>
<td></td>
</tr>
<tr>
<td>2:35 pm- 2:55 pm</td>
<td>Ponencia</td>
<td>Laura Bermeo</td>
<td>"Análisis Sensorial de productos alimenticios"</td>
<td></td>
</tr>
<tr>
<td>2:55 pm - 3:15 pm</td>
<td>Ponencia</td>
<td>Germán Antía</td>
<td>"Cosecha de Cítricos: caso naranja"</td>
<td></td>
</tr>
<tr>
<td>3:15 pm - 3:35 pm</td>
<td>Ponencia</td>
<td>Ángelica Cardona</td>
<td>"Retos de las materias primas para su industrialización caso: cítricos y aguacate"</td>
<td></td>
</tr>
<tr>
<td>3:35 pm - 3:55 pm</td>
<td>Ponencia</td>
<td>Carlos Ariel Cardona</td>
<td>"Biorefinerías de residuos cítricos. Caso cascara de naranja"</td>
<td></td>
</tr>
<tr>
<td>3:55 pm - 4:15 pm</td>
<td>Ponencia</td>
<td>Coralía Osorio</td>
<td>Bioprospección de aguacate y passifloras.</td>
<td></td>
</tr>
<tr>
<td>4:15 pm - 4:35 pm</td>
<td>Ponencia</td>
<td>Carlos Eduardo Orrego</td>
<td>"Cadenas Frutícolas Andinas y Agricultura Familiar"</td>
<td></td>
</tr>
</tbody>
</table>

Debido a la contingencia ocasionada por el virus COVID-19 a nivel mundial, en el año 2020 se realizaron conferencias virtuales a través de webinar, teniendo acogida entre espectadores de Suramérica de diferentes sectores.
Presentaciones
Presentación 1. El Aguacate, cultivo sustentable con potencial en Ecuador. [MSc. William Viera]

Resumen
El Magister Ing. William Viera con apoyo del INIAP y UNC SENA de Ecuador, realizó una investigación del Aguacate (Persea Americana) en su variación Hass analizando la respuesta de la fruta en esta variedad con la aplicación de dos niveles de nitrógeno y potasio con fertirrigación en el cultivo; buscando la mejora de su calidad para el aumento de la producción.

Dentro de la investigación existen prácticas de manejo que promueven mecanismos de regulación biológica en donde se evaluó el efecto de la aplicación de microorganismos en el desarrollo de injertos a nivel vivero. Durante la presentación se observa registro fotográfico del proceso llevado a cabo con la fruta y gráficos que evidencian los resultados obtenidos de la aplicación, terminando con la comparación de la absorción de nutrientes en las diferentes especies evaluadas.
Resumen

El proyecto “Agregación de valor al Aguacate en estado fresco y procesado” implementa en las dos variaciones de la fruta (Fuerte y Hass) una serie de seguimientos que permiten observar la evolución de la misma desde la cultivación y la durabilidad hasta llegar al mercado del consumidor. Igualmente, desarrolla usos del Aguacate en donde se aprovechan sus propiedades para la elaboración de productos, en un primer caso se hace uso de la pulpa de la fruta para reemplazar la fuente de aceite vegetal en el desarrollo de un producto de pan, lo anterior también haciendo uso de pulpa de maracuyá y granadilla.

El siguiente desarrollo fue el de una salsa aderezo, con las combinaciones maracuyá/aguacate y granadilla/aguacate, en donde se analizaron la consistencia, la vida útil, calidad nutricional, funcional y capacidad antioxidante de las mejores formulaciones.

Finalmente, se dan a conocer las propiedades de la semilla del aguacate en la extracción por ejemplo del almidón, entre otras, que presentan excelentes condiciones para la obtención de bioplástico, lo que permite la elaboración de empaques amigables con el medio ambiente.

Gráfico 2. Obtención de bioplásticos a partir de residuos de aguacate
Presentación 3. El reto de los frutales en Caldas [Esp. Silvio Ríos]

Resumen

Este trabajo es fruto de un trabajo realizado con ASOHOFRUCOL quienes trabajan con pequeños y medianos productores. Dentro del proyecto se priorizaron: el aguacate Hass, los cítricos (naranja y mandarina), el plátano y la gulupa, porque cuentan con potencial para la exportación.

La ubicación del departamento de Caldas es óptima para temas de conexiones con otros departamentos y cuenta con vías carreteables hacia los dos océanos lo que le permite al cultivo caldense ser competitivo en el mundo con este sector. Uno de los retos a los que se enfrenta el productor es al transporte usado para el ingreso de insumos y para sacar el cultivo, donde se usa la mula como medio, produciendo más tiempo gastado, y estropeos a la fruta; por lo que vías carreteables en las zonas de cultivación ayudarían a mejorar los procesos.

Las estadísticas de la siembra de aguacate en caldas muestran las exportaciones que se realizan especialmente dirigidas a países bajos, igualmente, como la importación del frutal ha disminuido por el aumento de la producción en el país.

Continuando con los cítricos, en el departamento de Caldas se cultivan tres tipos de naranja (valencia, salustiana y sweety) las dos primeras con mayor posibilidad de exportación por temas de sabor, igualmente se les aplican procesos de maduración para que adquieran el color amarillo que es más apetecido para la compra. Continuando, la Lima ácida o limón Tahití cuentan con una gran demanda a nivel internacional. Las mandarinas en su variación arrayana y oneco, también ha tenido retos por el precio bajo al interior del departamento, lo que disminuye la cultivación, es por esto que se está buscando la exportación de esta fruta para regular los precios al interior.

La gulupa también es una fruta con una amplia demanda en temas de exportación y los volúmenes de esta han aumentado considerablemente, ocupando el 3% de la exportación colombiana.

Presentaciones simposio\Dia 1_4_Silvio Ríos_ El reto de los frutales en Caldas.pdf
Presentación 4. Impacto de la COVID-19 en las cadenas de valor agroalimentario [Ph.D. Víctor Falguera]

Resumen

El COVID-19 nos tomó por sorpresa a todos y nos hizo deslumbrar luces y sombras sobre las cadenas agroalimentarias a nivel mundial. La sensación de zozobra pánico generada por un virus que nadie conocía y se esparció por todos los continentes en menos de seis meses, ocasionando que inicialmente se presentara desabastecimiento en supermercados y tiendas de los productos de primera necesidad, para nadie fue un secreto las largas filas para abastecerse de los productos de grano y aseo, es decir de lo que para muchos son productos de primera necesidad. Sin embargo, con el paso del tiempo, la tendencia de compra cambió, las jornadas largas de confinamiento total hicieron que aumentaran compras en confitería y licor. Por otro lado, se presentó un aumento en el consumo de frutas y verduras ocasionadas por la preocupación de las familias para llevar una sana alimentación.

En general, el sector agrícola no presentó pérdidas significativas respecto a otros sectores comerciales que estuvieron totalmente clausurados durante un largo periodo de tiempo. Otro aspecto de cambio en cuanto a tendencias de compra se refiere al incremento de adquisición en locales comerciales rurales, cercanas y de menor superficie, incrementando la compra local, de producto de calidad y fresco.

Frente a la pandemia ocasionada por este virus existen muchos retos por realizar, entre ellos la integración de los actores como academia, ciudadanía, industria y agentes territoriales que permitan la implementación y mejora en las cadenas de valor agrícola.
Presentación 5. La energía solar en la agroindustria [Ph.D. Francisco Fonseca]

Resumen

Este es un proyecto que se ha desarrollado en la ciudad de Ibagué con una comunidad agrícola. Las comunidades agrícolas con mayor potencial en Colombia son aquellas se encuentran situadas alrededor de grandes ciudades, se han buscado alternativas que favorezcan la estadía de estos en las zonas rurales con la finalidad de que no migren a la ciudad, mejoren sus condiciones de vida y alcancen comodidades. En este proyecto se ha intentado juntar muchas partes, la empresarial académica, social y productiva.

Dentro de los objetivos de desarrollo sostenible, se encuentra el fortalecer todos los procesos productivos en los que estén involucrados mujeres campesinas Colombia y en su mayoría han sido víctimas de conflicto armado. La comunidad objetivo fue desplazada por temas de violencia llegaron a Ibagué en busca de nuevos medios de trabajo, actualmente viven de la agricultura. Lo interesante de este proyecto, es que se ha logrado una la independencia energética, dado que no depende energéticamente ni de combustibles fósiles ni de ni de sistema eléctrico.

En este proyecto se han desarrollado nuevos productos, una baja generación de residuos. No se tienen gases de efecto invernadero, toda la energía suministrada es solar. La innovación de este proyecto es, nuevos modelos productivos, la generación nuevas cadenas de calor y desarrollo de productos en valor agregado.

Los productos desarrollados son inocuos, tienen una vida útil de 12 meses, lo cual los hace competitivos en el mercado, aun se continúa trabajando en la optimización del empaque y desarrollo de canales de comercialización. Los productos deshidratados desarrollados son: mango, piña, banano, uchuva, cebolla, arracacha, fresa. La calidad del producto obtenido es alta, cumpliendo con estándares como color, textura, sabor y rendimientos interesantes. La capacidad que tiene la planta deshidratación está entre 5 y 3 toneladas de frutas y hortalizas al mes esta variación en la cantidad depende del estado del tiempo en épocas de lluvia en la zona. La capacidad de producción es de 500 kg de frutas y hortalizas al mes, el precio promedio de kilogramo/deshidratado es 40.000 COP al mercado mayorista, el total de las ventas aproximadamente es de 20.000.000 con una utilidad entre el 30% y 35%.

Día 1_6_Francisco Fonseca_ La energía solar en la agroindustria.pdf
Presentación 6. Generación de cadenas productivas sustentables en frutales nativos de Ecuador [Ing. Dennis Brito Madrid]

Resumen

En la generación de las cadenas de valor, el expositor mencionó dos conceptos básicos: la irrupción y la inteligencia artificial para el futuro de la agricultura. Los modelos de negocios ya no son verticales sino irruptivos, se da el ejemplo del modelo de negocio de las cadenas de hoteles Hilton comparado con airbnb (sin un solo hotel), estuvo mejor valorado en la bolsa (reporte del año 2019). Con la inteligencia artificial, se da el ejemplo de cómo una sola persona puede manejar 1.000 hectáreas de maíz con 15 pantallas revisando constantemente la fertilización, el clima, plagas y enfermedades, entre otros. Así se menciona el sector agrícola como agente de cambio del sector de los alimentos, con el reto de generar alimentos para 7500 millones de personas, así como trabajar en la reducción del calentamiento global. Se mencionan iniciativas cómo generar una red local de mercado que permita a las personas consumir de una manera consciente y garantizar su seguridad alimentaria.

Las cadenas de valor en el Ecuador se focalizaron en las frutas ancestrales con el objetivo de fomentar: el ingreso de divisas, generar trabajo en el campo y dinamizar la agricultura en la ruralidad y disminuir la desigualdad y el cuidado del medio ambiente con especies nativas. Con la siembra de especies nativas se cuida el suelo y además menciona que se debe asegurar su germoplasma para diferenciarse de otros productos similares. La propuesta de valor ecuatoriana se basa en la calidad mediante la obtención certificaciones internacionales como las buenas prácticas de manufactura. También con productos sustentables para entrar a mercados internacionales mediante el cuidado de las fuentes de agua, sistemas de producción limpia con la implementación de agricultura de precisión. Para garantizar el éxito de la cadena también implica investigación, trabajar de manera conjunta, trazabilidad, empaques. Al final hace alusión a los productos nativos ecuatorianos como la chía, frutos Rojos, pitahaya roja pulpa blanca y pulpa morada, quinua, mortiño, granada, chimbalo, maracuyá y el lichi.
Presentación 7. Importancia del cultivo del aguacate en Colombia [Ph.D. Jorge Alonso Bernal]

Resumen

En Colombia el aguacate a pesar de ser un frutal antiguo, apenas hasta finales del siglo XX empieza a ser importante y a dárselo más especialización e investigación, debido al auge que ha tenido por sus cualidades nutricionales y organolépticas.

El aguacate posee unas características fisiológicas particulares que le permite adaptarse a diferentes condiciones, especialmente las de la selva tropical y del trópico alto ya que dependiendo de la zona de origen tiene adaptaciones.

Se pueden establecer tres tipos de variaciones en el frutal, Persea americana var. Americana (antillana) adaptados a climas tropicales, Persea americana var. Guatemalensis (guatelmateca) y Persea americana var. Drymifolia (mexicana).

Se presentan cifras correspondientes a los países productores de aguacate en el mundo, siendo México el mayor productor y también donde Colombia juega un papel importante, igualmente, se buscan mejoras en la producción del frutal a nivel Colombia con más tecnología, pero no traída de otras partes sino especializada para nuestras las condiciones climáticas colombianas.
Presentación 8. Huella de Carbono en el Cultivo de Gulupa [Ph.D. Valentina Hernández]

Resumen

La gulupa es una fruta con sabor exótico agradable, acidez menor al maracuyá y aroma característico que la han convertido en una fruta muy apetecida en diferentes escenarios. En Colombia es cultivada en regiones como el eje cafetero, Huila y Valle del Cauca, incrementando su producción alcanzando las 26.000 toneladas para el año 2019 y convirtiéndose en el cuarto producto frutal de exportación.

En la investigación realizada por Hernández y compañía, se utilizó la metodología IPCC de la EPA en la cual con ayuda de la información de bibliografía con la cual se tomó base y se realizaron los cálculos para determinar la huella de carbono concluyendo que los principales factores que afectan en el cultivo son el uso de irrigación, la aplicación de fertilizantes nitrogenados y en menor proporción el proceso de plantado y siembra.

Es importante que se creen nuevas estrategias de fertilización y riego que permitan generar cultivos más orgánicos y limpios, manteniendo la calidad de la fruta de exportación.

Gráfico 8. Distribución de la emisión de gases de efecto invernadero por sector económico. Fuente: EPA.
Presentación 9. Análisis sensorial de productos alimenticios [M.Sc. Laura Bermeo]

Resumen

Esta investigación tiene por objetivo suministrar un aprovechamiento integral a la Gulupa contribuyendo al mejoramiento de la productividad y desarrollo de la industria colombiana. Se desarrollaron dos productos (yogur y barra de cereal), adicionando salsa de gulupa 60% de fruta con 40% azúcar, cada una elaborada a partir de 4 diferentes estados de maduración y así evaluar la aceptación sensorial de los productos alimenticios. El yogur y barra de cereal se evaluaron a través de la metodología de escala hedónica facial de 5 puntos.

El panel sensorial estuvo conformado por 101 jueces no entrenados, 53 hombres y 48 mujeres quienes evaluaron solamente el sabor del yogur y la barra de cereal frente a los 4 testados de maduración de la fruta utilizada. Respecto a las características fisicoquímicas analizadas en frutos de gulupa, se pudo determinar que el valor de pH se mantuvo prácticamente constante en los estados de madurez evaluados (30%, 50%, 70% y 100%), mientras que la acidez disminuyó a medida que la fruta era más madura. Así mismo, características como los sólidos solubles totales e índice de madurez, presentaron un aumento gradual en relación con la maduración de la fruta.

De acuerdo con los resultados obtenidos se puede decir, que el 56,44% de los consumidores, prefirieron el yogur cuando fue endulzado con salsa de gulupas maduras o hasta sobremaduras, mientras que, para las barras de cereal el 51,49% de los consumidores las prefirieron cuando fueron endulzadas con salsa de gulupa al 70% de maduración. Lo anterior, permite demostrar que existen diversas alternativas para el aprovechamiento de frutos de gulupa que no cumplan con los parámetros de exportación (estado de madurez, calibre y daños en la cáscara), en su mayoría comercializados a bajos precios, para generar productos con valor agregado y de gran aceptación en el mercado.

Existen diversas alternativas para el aprovechamiento de frutos de gulupa que no cumplan con los parámetros de exportación, para generar productos con valor agregado.
La cosecha e

Resumen

El ingeniero Germán Antia realizó su exposición basado en su experiencia para el proceso de cosecha de cítricos, especialmente con la naranja en la zona cafetera colombiana.

Entre las etapas de cosecha que se identificaron relevantes para un agricultor y la industria, se encuentran: identificar épocas de cosecha, planear la cosecha, identificar índices de madurez requeridos, definir técnicas de cosecha, tener buen manejo de la fruta recolectada, trasladar al centro de acopio para acondicionamiento y despacho y tener buen manejo de desechos.

En cada una de las etapas del proceso es importante entender las exigencias del cliente, las cuales pueden variar si se trata de un mercado en la plaza de la ciudad, un mercado informal o especializado, o si la comercialización se realiza directamente a la industria. Algunas de las variables con mayor influencia en la toma de decisión consisten en %brix, contenido de ácido cítrico, contenido mínimo de jugo de fruta, el calibre y el contenido de azúcares.

La cosecha e

La cosecha en un concepto empresarial abarca los aspectos de gestión y no sólo la función puramente operativa.

Gráfico 10. Parámetros para determinar la madurez de la naranja
Presentación 11. Retos de las materias primas para su industrialización caso: cítricos y aguacate [Ing. Angélica Cardona]

Resumen

En el caso de la industria se cita la resolución 3929 2013 donde se presentan las necesidades físico-químicas: índice de refracción 9,5 - 12.5 grados brix, acidez 0.6 - 1.3%, ratio 7.0 y 20.5, potencial de hidrógeno pH 3.2 - 3.9 y el diámetro 60 - 78 mm. Se hace especial énfasis en la en el índice de madurez requerido entre 3 y 5, en el cual los proveedores envían muchas veces entre 2 y 3. Para la empresa hace difícil la producción, el jugo queda de mala calidad, con notas amargas y aceitosas generando rechazos por el consumidor. Para los proveedores la naranja será rechazada y el agricultor pierde el transporte y la venta oportuna en otro mercado. Aquí se cita el caso de México en el cual las empresas trabajan de la mano con los citricultores e identifican información relevante y oportuna como el porcentaje de pulpa, el posible rendimiento y al final garantizan el cumplimiento de los requisitos. Aquí se identifica como otro de los retos es la información para tener conocimiento de datos como tiempos de producción, las áreas de cosecha y así planear y obtener los mejores beneficios.

En el caso del aguacate se cita la norma STAN 197 de 1995 donde se describen las particularidades del aguacate para su venta en fresco. Estas son más exigentes pues incluyen la selección, la limpieza y la exportación. La ingeniera muestra un ejemplo de un reporte de arribo del aguacate a Europa donde se registra el peso, los defectos, revisan el historial de temperatura de los contenedores y estima la categorización y el valor económico. Antes del despacho el aguacate debe estar libre de residualidad de las moléculas, que no deben estar por fuera de los límites para que no sean rechazados.
Presentación 12. Biorrefinerías de residuos cítricos. Caso cásica de naranja [PhD. Carlos Ariel Cardona]

Resumen

Una biorefinería es un sistema complejo, donde la biomasa se procesa o fracciona integralmente para obtener más de un producto, incluyendo bioenergía, biocombustibles, productos químicos y compuestos de alto valor agregado que solo pueden extraerse de fuentes biológicas.

Se estudió un esquema de biorefinería para los residuos de cásica de naranja procedentes de su industrialización para su aprovechamiento en la producción de energía y otros subproductos relacionados. El rendimiento de los productos (aceite esencial, biogás y fertilizante) se determinó según resultados experimentales. La evaluación de la biorefinería propuesta incluyó además el consumo energético del proceso y su análisis económico y de ciclo de vida (LCA), que se realizaron utilizando los aplicativos Aspen Energy analyzer, Aspen Process Economic Analyzer y SimaPro, respectivamente.

Los resultados experimentales fueron relevantes en términos de contenido de sustancias de alto valor agregado y su potencial fue estudiado al detalle a través de diferentes extracciones y conversiones. Todo lo anterior con un estudio minucioso de una biorefinería integrada demostraron la prefactibilidad técnica, energética, económica y ambiental de un sistema productivo para procesar más de 450 kg hora de cásica de naranja hacia productos de valor agregado. Lo anterior es un hito para la región que puede extrapolarse a otros países en términos metodológicos para valorizar y hacer más eficiente la cadena de los cítricos en Colombia, Ecuador y Perú.
Presentación 13. Bioprospección de aguacate y pasifloras [PhD. Coralia Osorio]

Resumen

Esta investigación se realizó en el marco de la red RIBRUTBIO -Red Nacional para la Bioprospección de Frutas Tropicales- cuyo objetivo principal era el aprovechamiento integral de especies frutales colombianas y ser un punto de referencia investigativo.

Se escogieron las frutas de las familias Solanaceas (lulo, tomate de árbol, uchuva y pepino dulce), Passifloras (gulupa, badea, granadilla y curuba) y Lauraceas (aguacate), y se incluyeron otras frutas que son importantes por sus características biofuncionales como las Mirtáceas (guayaba agria, arazá) y Sapotaceas (zapote costeño y lúcuma).

El programa se dividió en 4 partes, la primera parte consistió en el estudio de las condiciones de cultivo, la segunda se centró en la caracterización de la materia prima tanto bromatológica, genómica y bioinformática. En la tercera parte se realizaron diversos estudios de metabolómica enfocada a compuestos volátiles, actividad ansiolítica, actividad biológica y evaluación funcional. La cuarta parte se enfocó en el diseño, desarrollo y caracterización de productos, se evaluaron los ingredientes naturales y luego el producto terminado y dos de ellos fueron escalados a planta piloto.

En el caso del aguacate se identificaron 31 ecotipos de aguacate y para el producto de interés capilar se escogió la variedad Hass y se realizó la transferencia de conocimiento con una de las empresas vinculadas a la red. Además, se desarrolló un prototipo para la extracción de aceite de aguacate.

En el caso de las pasifloras se realizó la caracterización fisicoquímica de las frutas, se extrajo la pectina de residuos agrícolas, con miras a usarlo en la parte alimenticia y en productos de aseo. Se realizó la parte morfoagronómica y diversidad genética de la gulupa, se caracterizó su aroma, se utilizaron semillas para el desarrollo de exfoliantes. Se caracterizaron metabolitos secundarios de la gulupa con actividad antiinflamatoria y sedativa, la metodología se transfirió a una de las empresas vinculadas.

Con base en los resultados obtenidos, es posible hacer trabajo interdisciplinario y lograr integrar desde el trabajo de laboratorio hasta la parte de la producción.

Presentaciones simposio\Día 2_7_Coralia Osorio_ Bioprospección de aguacate y pasifloras.pdf
Presentación 14. Cadenas frutícolas andinas y agricultura familiar [PhD. Carlos Orrego]

Resumen

Más del 90 por ciento de alrededor de 600 millones de explotaciones agrícolas en el mundo están administradas por agricultores familiares, que producen al menos el 80 por ciento de los alimentos del planeta, en términos de valor. La fruticultura Andina no escapa a este contexto.

Desde 2014 se desarrollaron dos proyectos financiados por Fontagro para apoyo a la agricultura familiar en estos tres países, con el concurso de investigadores e instituciones de la región y de España. En el caso de Colombia, la región de influencia fue el sur de Antioquia, norte del Tolima, Caldas y Risaralda. La metodología de intervención, que incluyó contribuciones y acciones en todos los eslabones de las cadenas frutícolas, se basó en el acompañamiento de parte del colectivo de investigadores a grupos agricultores-proveedores de fruta y transformadores.

Algunas de las acciones positivas en diversas dimensiones que realizaron ambos proyectos fueron:

Respecto de la sostenibilidad generacional, permitieron a un amplio grupo de jóvenes acceso a la información y la educación; frente a vulnerabilidad al cambio climático, generaron técnicas apropiadas de manejo de agua, nutrientes y fertirriego; en cuanto al problema asociado al incremento de excedentes de fruta no comercializable, brindando abundante información sobre las alternativas de productos de agregación de valor a partir de pulpa de fruta o residuos como ingredientes. Finalmente, favorecieron un entorno propicio para la cooperación en favor de la agricultura familiar mediante alianzas y proyectos de apoyo, que, junto con las alianzas de proveedores de fruta y transformadores, persistirán aún después de la conclusión de estas cooperaciones técnicas.

Gráfico 14. Resultados proyecto Productividad y competitividad frutícola andina a corte 2020

Presentaciones simposio\Día 2 8 Carlos E Orrego Cadenas Frutícolas Andinas y Agricultura Familiar.pdf
Lecciones aprendidas

✓ Los cítricos, las pasifloras y el aguacate son tres especies de frutales importantes en el área andina, lo cual pone el foco de agricultores para tener la capacidad de desarrollar cultivos de calidad y con condiciones respetables con el medioambiente.

✓ En el manejo de la cosecha de un frutal es necesario conocer todas las etapas que se llevan a cabo hasta la comercialización del producto, conocer muy bien la competencia es una de las etapas claves para ser un buen competidor.

✓ El cultivo de aguacate tiene un reto importante en utilizar el agua de manera óptima con el fin de minimizar el impacto en la huella hídrica que genera el cultivo, el fertirriego es una herramienta que permite hacerlo de forma más eficiente.

✓ La industrialización de los frutales implica conocer adecuadamente sus características y potenciales para mejorar las cualidades de los productos a desarrollar, su formulación y comercialización.

✓ Apoyar la agricultura familiar es clave para la seguridad alimentaria y sostenibilidad de las regiones y países. La innovación social es una herramienta que apoya el desarrollo del sector agrícola a través del conocimiento de sus capacidades y la explotación responsable de las mismas.
Conclusiones

✓ Las especies frutales estudiadas en el proyecto “Productividad y competitividad frutícola andina” son importantes en la economía de la región andina, dada la importancia que tiene el sector agrícola en Suramérica. Es importante identificar las fortalezas y debilidades del cultivo de cada especie para mejorar las condiciones de cosecha y comercialización.

✓ El trato respetuoso y adecuado con el medio ambiente debe ser un eje indispensable en la actualidad a la hora de pensar en la cosecha de los frutales andinos, el adecuado uso del agua y la disminución de agroquímicos produciendo frutales orgánicos, deben ser factores para tener en cuenta para la producción sostenible.

✓ El respeto por las comunidades y el interés por el crecimiento de una sociedad de manera integrada es un asunto cada vez más importante si queremos generar progreso con sentido social.

✓ Con la participación de diferentes actores como fueron expertos del proyecto, academia, empresas, gobierno y, por supuesto, pequeños y medianos agricultores, el I Simposio de intensificación sostenible de la fruticultura andina permitió la relación entre los eslabones de la cadena frutícola en los países del proyecto, con el fin de solucionar problemáticas de interés común.
Referencias

Biografías de los participantes

MIGUEL ANGEL CUBERO

Ingeniero Químico, Magister en Investigación en sistemas de producción agroalimentaria. Ph.D. en Ciencia y Tecnología de los Alimentos. Actualmente se desempeña como: CEO en Ingredalia S.L. Se ha desempeñado como profesor en la Universidad de Lleida. Área de experiencia: Aceites para aplicaciones alimentarias y cosméticas. Jugos de frutas y verduras, productos derivados de frutas y residuos (preparaciones de frutas, bebidas de frutas, etc.).

WILLIAM VIERA

BEATRIZ DOLORES BRITO GRANDES

Ingeniera Química, Máster en Química Agroalimentaria. Especialización en poscosecha, valor agregado, procesamiento y calidad de alimentos. La trayectoria en el INIAP, se inicia en enero 1986 en el Departamento de Nutrición y Calidad como Investigadora Agropecuaria, desde el año 2015 es Investigadora Acreditada y Categorizada por la SENESCYT para realizar investigación científica. Ha participado en proyectos de

SILVIO RIOS YEPES

En mi experiencia laboral me he desempeñado como Coordinador Departamental de Asohofrucol en Caldas. Extensionista (Contacto permanente con la comunidad, transmitiendo conocimientos agrarios y del sector agropecuario en general) Secretario de Planeación, Alcalde Municipal, Secretario de Agricultura (Elaboración, Planeación Y Ejecución De Proyectos Agrarios), dirección de personal, manejo de grupos, destacando el liderazgo, trabajos con la comunidad; Secretario de Desarrollo Económico y Secretario de Vivienda y Agua Potable; Contratista con el INCODER de Caldas, Coordinador Proyectos de Adecuación de Tierras, entre otros.

VICTOR FALGUERA PASCUAL

Ingeniero Técnico Agrícola, Ingeniero Agrónomo, Master en Sistemas de Producción Agroalimentarios, Doctor en Ciencia y Tecnología Agraria y Alimentaria, Doctor en Ingeniería y Tecnologías Avanzadas. Trabaja en AKIS International, Lleida y cuenta con experiencia en las siguientes áreas: Operaciones básicas en la industria de transformación de alimentos, Enzimología de frutas y derivados, Reología de fluidos alimentarios y Análisis multivariante de datos en experimentación agroalimentaria.
FRANCISCO FONSECA

DENNIS BRITO MADRID

JORGE ALONSO BERNAL
JAVIER ORLANDO ORDUZ

VALENTINA HERNÁNDEZ PIEDRAHITA
Ingeniera Química, Magister en Ingeniería, Ph.D. en Ingeniería - Ingeniería Química – Universidad Nacional de Colombia, Ph.D.en Energías Renovables –Universidad de JAEN España.
Dinamizadora Tecno-parque Nodo Manizales Centro para la Formación Cafetera SENA- Regional Caldas.

LAURA PATRICIA BERMEO ESCOBAR
Ingeniera de Alimentos de la UNIVERSIDAD DE CALDAS. Maestría en microbiología agroindustrial de Universidad Católica De Manizales.
Instructora investigadora SENNOVA – SENASENA Regional Caldas, Colombia.
Áreas de Experiencia en Control de calidad de alimentos, Microbiología de alimentos, Biotecnología, Transformación y desarrollo de alimentos y Formulación y evaluación de proyectos.

GERMÁN ALONSO ANTIA LONDOÑO
Ingeniero Agrónomo, Especialista en cosecha y postcosecha y comercialización de frutas y hortalizas. Especialista en formulación y evaluación de proyectos.
Instructor de Agricultura en SENA- Regional Caldas
Área de experiencia: Manejo de cultivos. Cosecha y postcosecha de frutas y hortalizas.
ANGÉLICA MARÍA CARDONA ARISTIZÁBAL

Ingeniera de Alimentos. Directora de investigación y Desarrollo en FLP Procesados S.A.S
Área de experiencia: Desarrollo de nuevos productos alimenticios. Mejoramiento de procesos industriales. Gestión de la innovación y sistemas de gestión y sistemas de gestión de calidad en plantas de alimentos.

CARLOS ARIEL CARDONA ALZATE

Ingeniero Químico. Magister y Ph.D. en Ingeniería Química de la Academia Estatal de Tecnología Química Fina de Moscú M.V.
Profesor titular en el Departamento de Ingeniería Química de la Universidad Nacional de Colombia en Manizales desde 1995.
Áreas de experiencia: desarrollo de procesos de separación no convencionales, termodinámica, procesos integrados, ingeniería de procesos, biorefinerías, cambio climático y agroindustria. En particular, ha trabajado en diferentes proyectos de investigación relacionados con el diseño de procesos químicos y bioquímicos, investigación y desarrollo de biocombustibles, análisis económicos y sostenibles de residuos agroindustriales de Colombia. Es autor y coautor de más de 180 trabajos de investigación, así como 13 libros de investigación y 48 capítulos de libros. Además, ha presentado más de 250 trabajos en eventos científicos. Actualmente, lidera el grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos (PQCB) en la Universidad Nacional de Colombia en Manizales.

CORALIA OSORIO ROA

Área de experiencia: Desarrollo de productos con valor agregado. Ecología Química. Química de Aromas. Química de Productos Naturales. Química del color, pigmentos para alimentos. Desde su graduación, Osorio ha estado vinculada profesionalmente con la Universidad Nacional, oficiando como docente, miembro del comité de posgrado en ciencias e investigadora. En la institución fundó la red de investigación sobre frutas tropicales REFRUTBIO, con la que ha adelantado proyectos de
caracterización metabólica y actividad biológica y funcional de especies frutales tropicales presentes en Colombia como el aguacate, el lulo y el tomate de árbol. Su labor investigativa la ha llevado a integrar comités científicos en instituciones internacionales como el Instituto Tecnológico de Tokio, la Universidad Estatal de Oregón y la Universidad de la República del Uruguay.

CARLOS EDUARDO ORREGO

Profesor titular de la Universidad Nacional de Colombia. Es Ingeniero Químico, Especialista en Ciencias-Física, Especialista en Ciencia y Tecnología de Alimentos, y PhD. en Ciencias-Química. Es investigador Senior. En los últimos cinco años ha coordinado y participado en varios proyectos de I+D, ganadores de llamadas públicas o privadas, nacionales y/o internacionales. Es el líder del equipo de investigación en los proyectos: "Productividad y competitividad de Frutales andinos, Fase I y II, y del equipo de auditoría del proyecto" Desarrollo de capacidades científicas y tecnológicas en biotecnología aplicada a los sectores de la salud y la agroindustria en el departamento de Risaralda " (2014-2019). Es el líder del equipo de investigación en los proyectos "Efecto de tres procesos de producción en la calidad y vida útil de la pasta de aguacate" (2017-2018); "Estudio de vigilancia tecnológica sobre métodos para tratamientos poscosecha (fermentación y secado) de cacao a pequeña, mediana y gran escala "(2018);" Vigilancia tecnológica sobre los usos de la manteca de cacao en sectores distintos del chocolate (2017); "Estudio de monitoreo tecnológico del contenido de cadmio (Cd) en productos de cacao "(2016). Proyectos financiados por FONTAGRO-Banco Interamericano de Desarrollo, Proyectos de cooperación industrial. Investigaciones actuales en: transformación, conservación y diseño de productos alimenticios, secado, catálisis enzimática, biocompuestos y competitividad de las cadenas de frutas andinas.