Sustainable intensification of legume-based livestock systems: Latin America and the Caribbean cooperation platform

The use of legumes in livestock increases animal productivity, biological N fixation and carbon sequestration in soils, and can reduce Greenhouse Gases emissions (GHG) from the system.

Can the use of legumes help us produce more meat emitting less greenhouse gases?

The implemented initiative

The aim of this project is to enhance livestock systems in Latin America and the Caribbean (LAC) by promoting the use of forage legumes. The project has a particular focus on improving production efficiency and protecting the environment. To achieve this, a cooperation platform has been established to examine the impact of legumes on various factors such as biological nitrogen fixation (FBN), nitrous oxide (N₂O), and methane (CH₄) emissions, as well as changes in soil carbon sink due to increased nitrogen input. The study also examines the impact of dietary changes on animal productivity.

To disseminate this knowledge, the project uses multiple channels such as mass media, scientific publications, conferences, and training programs aimed at a diverse audience.

Partnering, cooperating and sharing knowledge; the key to making livestock production more efficient in the region

The technological solution

The member countries of this platform share a common characteristic: beef production is a vital component of their economies. Additionally, they have the opportunity to use legumes as a forage resource. Despite their differences, legumes can fix atmospheric nitrogen, reducing fertilizer costs and energy consumption. Furthermore, legumes make a significant contribution to plant nutrition and the storage of carbon in the soil. By balancing emissions and carbon retention, there is a possibility of reducing greenhouse gas emissions from livestock production systems, improving greenhouse gas inventories.

The solution lies in exploring the resources that countries possess but which due to usage, customs, or situational factors, are sometimes not adequately exploited. This program aims to train human resources within a framework of collaboration and capacity complementation.

Results

The publication of results on enteric and soil CH₄ emissions, soil N₂O, and FBN continued. New data on FBN confirm the large proportion of N in plants coming from the air. In the last year, a phase of comparison of N₂O emission data from excreta of grazing animals vs. free-range, awaiting sequencing to characterize microbial populations that explain the variations. Regarding enteric CH₄, emissions decrease when pastures have legumes with optimal condensed tannin contents. Partial results show that there is an increase in the C stock of the first centimeters of the soil in those pastures with legumes.

The data for the calculation of FE from N present in feces and urine in what is today the main cattle-raising region of Argentina are in final review before being published.